# EVALUATION OF GROUND WATER QUALITY OF BIROL AND BOCHAGONJ UPAZILLA IN DINAJPUR FOR IRRIGATION AND DRINKING USAGE

# A THESIS BY

TOPU KUMAR ROY Student No: 1605556 Session: 2016-2017 Thesis Semester: July-December, 2017

## **MASTER OF SCIENCE (M.S.)**

IN

## **IRRIGATION AND WATER MANAGEMENT**



# DEPARTMENT OF AGRICULTURAL AND INDUSTRIAL ENGINEERING HAJEE MOHAMMED DANESH SCIENCE AND TECHNOLOGY UNIVERSITY, DINAJPUR

DECEMBER, 2018

# EVALUATION OF GROUND WATER QUALITY OF BIROL AND BOCHAGONJ UPAZILLA IN DINAJPUR FOR IRRIGATION AND DRINKING USAGE

## A THESIS BY

## **TOPU KUMAR ROY**

# Student No: 1605556 Session: 2016-2017 Thesis Semester: July-December, 2017

Submitted to the Department of Agricultural & Industrial Engineering,

Hajee Mohammed Danesh Science and Technology University, Dinajpur In partial fulfillment of the requirements for the degree of

## MASTER OF SCIENCE (M.S.)

IN

**IRRIGATION AND WATER MANAGEMENT** 



# DEPARTMENT OF AGRICULTURAL & INDUSTRIAL ENGINEERING HAJEE MOHAMMED DANESH SCIENCE AND TECHNOLOGY UNIVERSITY, DINAJPUR

**DECEMBER, 2018** 

# EVALUATION OF GROUND WATER QUALITY OF BIROL AND BOCHAGONJ UPAZILLA IN DINAJPUR FOR IRRIGATION AND DRINKING USAGE

## A THESIS BY

## **TOPU KUMAR ROY**

## Student No: 1605556 Session: 2016-2017

## Thesis Semester: July-December, 2017

Approved as to style and contents by

(**Dr. Md. Mofizul Islam**) Associate Professor Supervisor

(Professor Dr. Mohammad Shiddiqur Rahman) Co-supervisor

## (Professor Dr. Md. Kamal Uddin Sarker)

Chairman Examination Committee And Chairman Department of Agricultural & Industrial Engineering Hajee Mohammad Danesh Science and Technology University, Dinajpur

December, 2018



### ACKNOWLEDGEMENT

All admirations and praises are solely due to Almighty God whose endless kindness mercy absolutely enabled the author to pursue study in Irrigation and Water Management discipline and to complete M.S. course and this research work successfully for the degree of M.S. in Irrigation and Water Management. The author expresses sincere appreciations, deep and sincere gratitude and profound indebtedness to reverend research supervisor **Dr. Md. Mofizul Islam**, Associate Professor, Department of Agricultural & Industrial Engineering (AIE), Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur for his valuable suggestions, scholastic guidance, constructive instructions, affectionate feelings and inspirations throughout the period of the research work and during the preparation of this thesis.

From the core of heart, the author humbly desires to express deepest and profound gratitude and immense indebtedness to the co-supervisor **Professor Dr. Mohammad Shiddiqur Rahman**, Department of Agricultural & Industrial Engineering (AIE), Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur for his critical advises and valuable comments as well as constructive criticisms during the research period and in the preparation of the dissertation. The author is happy to express sincere gratitude to teachers **Professor Dr. Md. Kamal Uddin Sarker**, Chairman, Department of Agricultural & Industrial Engineering (AIE), Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur for their cooperation and inspirations during the research work. The author humbly avails the opportunity of conveying heartiest respect and thankfulness to honorable teachers of the Department of Agricultural & Industrial Engineering (AIE), HSTU, for their encouragements, inspirations, active cooperation, valuable suggestions and providing research facility during the period of the study.

The author is also indebted to all laboratory and office staffs of the Department of Agricultural & Industrial Engineering and Department of Agricultural Chemistry, HSTU, Dinajpur, who directly or indirectly helped to complete this work.

Last but not least the author express heartfelt gratitude to beloved parents, other family members, friends who always sacrificed and all sorts of support their causes of happiness for higher study and constant inspirations throughout academic careers.

The Author

December 2018

### ABSTRACT

A laboratory experiment was performed to determine the chemical constituents of groundwater for irrigation and drinking uses in the selected site of Birol and Bochagonj Upazila under Dinajpur district of Bangladesh. Thirty six and eighteen water samples of groundwater source were collected from different locations of Birol and Bochagonj Upazila, respectively for the determination of chemical constituents. The research work was accomplished to assess the extent of water quality and to predict the suitability and acceptability for drinking and irrigation usage. Groundwater samples collected from selected areas were classified by analyzing chemical constituents present therein. Several parameters like Ca, Mg, HCO<sub>3</sub>, Fe, Mn, pH, EC, TDS, SAR, SSP, H<sub>T</sub>, permeability index and Kelly's ratio were considered for the classification. In the study areas, the water contained an appreciable amount of Ca, Mg, Na, K. Fe, Mn, Zn, Cu and SO<sub>4</sub>, which concentrations were found within safe limit for drinking and irrigating crops. The pH value of all the water samples indicating slightly acidic to slightly alkaline and found `suitable' for irrigation and drinking. On the combination basis of EC and SAR, all samples were low salinity and low alkali hazard. All the samples were graded as 'fresh water' based on TDS and "excellent" based on SSP, collected in Birol and Bochagonj upazilla. As regards to hardness, 12 samples were 'Soft' and 24 samples were 'Moderately Hard'for irrigation but 27 samples were 'Highest Desirable' and 9 samples were 'Desirable' for drinking in Birol upazilla and for Bochagonj upazilla, all samples were 'moderately hard' for irrigation but 12 samples were 'Highest Desirable' and 6 samples were 'Desirable' for drinking. All the waters under test were suitable and might be recommended for drinking and irrigating agricultural crop in the study area. The present investigation indicated that the analysis of groundwater is important for proper understanding of the irrigation and drinking. It is suggested that drinking and irrigation water should be analyzed systematically for understanding the impact of dissolved ions on the quality crops and soil health management in the entire area.

|             |                                                    | PAGE    |
|-------------|----------------------------------------------------|---------|
| CHAPTER     | TITLE                                              | NO.     |
|             | ACKNOWLEDGEMENT                                    | i       |
|             | ABSTRACT                                           | ii      |
|             | CONTENTS                                           | iii-v   |
|             | LIST OF TABLES                                     | vi      |
|             | LIST OF FIGURES                                    | vii     |
|             | LIST OF APPENDICES                                 | viii-ix |
| CHAPTER I   | INTRODUCTION                                       | 1-3     |
| CHAPTER II  | REVIEW OF LITERATURE                               | 4-13    |
| 2.1         | pH                                                 | 4       |
| 2.2         | Electrical conductivity and salinity               | 5       |
| 2.3         | Total dissolved solids                             | 5       |
| 2.4         | Cations                                            | 6       |
| 2.4.1       | Calcium, magnesium, sodium and potassium           | 6       |
| 2.4.2       | Zinc                                               | 7       |
| 2.4.3       | Iron                                               | 7       |
| 2.4.4       | Manganese                                          | 8       |
| 2.5         | Anions                                             | 9       |
| 2.5.1       | Sulphate                                           | 9       |
| 2.5.2       | Phosphate                                          | 9       |
| 2.5.3       | Carbonate and Bicarbonate                          | 10      |
| 2.5.4       | Chloride                                           | 10      |
| 2.6         | Sodium adsorption ratio (SAR)                      | 11      |
| 2.7         | Soluble sodium percentage (SSP)                    | 11      |
| 2.8         | Residual sodium carbonate (RSC)                    | 12      |
| 2.9         | Hardness                                           | 13      |
| CHAPTER III | MATERIALS AND METHODS                              | 14-22   |
| 3.1         | Collection and preparation of ground water samples | 14      |
| 3.1.1       | Site                                               | 14      |
| 3.1.2       | Collection of water samples                        | 14      |

# CONTENTS

|            |                                               | PAGE  |  |
|------------|-----------------------------------------------|-------|--|
| CHAPTER    | TITLE                                         | NO.   |  |
| 3.2        | Notes on Analytical Methods of Water Analysis | 18    |  |
| 3.2.1      | pH                                            | 19    |  |
| 3.2.2      | Electrical conductivity (EC)                  | 19    |  |
| 3.2.3      | Total dissolved solids (TDS)                  | 19    |  |
| 3.2.4      | Carbonate and bicarbonate                     | 19    |  |
| 3.2.5      | Nitrate nitrogen                              | 20    |  |
| 3.2.6      | Phosphorus                                    | 20    |  |
| 3.2.7      | Sulphate sulphur                              | 20    |  |
| 3.2.8      | Calcium                                       | 20    |  |
| 3.2.9      | Magnesium                                     | 21    |  |
| 3.2.10     | Sodium and potassium                          | 21    |  |
| 3.2.11     | Zinc, copper, iron and manganese              | 21    |  |
| 3.3        | Evaluation of Water Quality                   | 22    |  |
| CHAPTER IV | <b>RESULTS AND DISCUSSION</b>                 | 23-43 |  |
| 4.1        | Ground water rating for irrigation            | 23    |  |
| 4.1.1      | pH                                            | 23    |  |
| 4.1.2      | Electrical Conductivity (EC)                  | 24    |  |
| 4.1.3      | Total dissolved solids (TDS)                  | 24    |  |
| 4.1.4      | Ionic constituents                            | 26    |  |
| 4.1.4.1    | Calcium (Ca)                                  | 26    |  |
| 4.1.4.2    | Magnesium (Mg)                                | 26    |  |
| 4.1.4.3    | Sodium (Na)                                   | 27    |  |
| 4.1.4.4    | Potassium (K)                                 | 27    |  |
| 4.1.4.5    | Iron (Fe)                                     | 28    |  |
| 4.1.4.6    | Zinc (Zn)                                     | 28    |  |
| 4.1.4.7    | Copper (Cu)                                   | 29    |  |
| 4.1.4.8    | Manganese (Mn)                                | 29    |  |
| 4.1.4.9    | Sulphate (SO <sub>4</sub> )                   | 30    |  |
| 4.1.4.10   | Phosphorus (PO <sub>4</sub> )                 | 31    |  |
| 4.1.4.11   | Bicarbonate (HCO <sub>3</sub> )               | 31    |  |

# **CONTENTS** (Contd.)

| CHAPTER   | TITLE                                                     | PAGE  |
|-----------|-----------------------------------------------------------|-------|
|           |                                                           | NO.   |
| 4.1.4.11  | Chloride (Cl)                                             | 32    |
| 4.2       | Ground water Quality Determining Indices                  | 33    |
| 4.2.1     | Sodium adsorption ratio (SAR)                             | 33    |
| 4.2.2     | Soluble sodium percentage (SSP)                           | 34    |
| 4.2.3     | Totalhardness (H <sub>T</sub> )                           | 34    |
| 4.2.4     | Permeability Index and                                    | 35    |
| 4.2.5     | Potential Salinity                                        | 38    |
| 4.2.6     | Kelly's Ratio                                             | 38    |
| 4.3       | Water quality rating and suitability of ground waters for | 39    |
|           | drinking and irrigation usage                             |       |
| CHAPTER V | CONCLUSION AND RECOMMENDATION                             | 44    |
|           | REFERENCES                                                | 45-49 |
|           | APPENDICES                                                | 50-70 |

# **CONTENTS** (Contd.)

| TABLE |                                                                            | PAGE |
|-------|----------------------------------------------------------------------------|------|
| NO.   | TITLE                                                                      | NO.  |
| 1     | Temerature, pH, EC and TDS of ground water samples of different            | 25   |
|       | unions in Birol                                                            |      |
| 2     | Temerature, pH, EC and TDS of ground water samples of different            | 25   |
|       | unions in Bochagonj                                                        |      |
| 3     | Cationic constituents of the collected ground water samples of             | 30   |
|       | different unions in Birol                                                  |      |
| 4     | Cationic constituents of the collected ground water samples of             | 30   |
|       | different unions in Bochagonj                                              |      |
| 5     | Anionic constituents of the collected ground water samples of              | 32   |
|       | different unions in Birol                                                  |      |
| 6     | Anionic constituents of the collected ground water samples of              | 33   |
|       | different unions in Bochagonj                                              |      |
| 7     | SAR, H <sub>T</sub> , SSP, PI and Kelly's ratio of ground water samples of | 39   |
|       | different unions in Birol                                                  |      |
| 8     | SAR, H <sub>T</sub> , SSP, PI and Kelly's ratio of ground water samples of | 39   |
|       | different unions in Bochagonj                                              |      |
| 9     | Quality classification and suitability assessment of water samples         | 41   |
|       | for irrigation of different unions in Birol Upazila                        |      |
| 10    | Quality classification and suitability assessment of water samples         | 42   |
|       | for irrigation of different unions in Bochagonj Upazila                    |      |
| 11    | Quality classification and suitability assessment of water samples         | 42   |
|       | for drinking of different unions in Birol Upazila                          |      |
| 12    | Quality classification and suitability assessment of water samples         | 43   |
|       | for drinking of different unions in Bochagonj Upazila                      |      |

| FIGURE<br>NO. | TITLE                                                             | PAGE |
|---------------|-------------------------------------------------------------------|------|
|               |                                                                   | NO.  |
| 1             | Map of the Dinajpur indicating the sampling sites along with the  | 15   |
|               | Bangladesh locating study area                                    |      |
| 2             | Map of the Birol upazila indicating the sampling sites along with | 16   |
|               | the Bangladesh locating study area.                               |      |
| 3             | Map of the Bochagonj upazila indicating the sampling sites along  | 17   |
|               | with the Bangladesh locating study area.                          |      |
| 4             | Different ions of water sample for Birol Upazila                  | 36   |
| 5             | Different ions of water sample for Bochaganj Upazila              | 36   |
| 6             | Different perameter of water sample for Birol Upazila             | 37   |
| 7             | Different perameter of water sample for Bochaganj Upazila         | 37   |

## LIST OF FIGURES

| APPENDIX | TITLE                                                                                                 |    |
|----------|-------------------------------------------------------------------------------------------------------|----|
| NO.      |                                                                                                       |    |
| Ι        | Information regarding water sampling                                                                  | 50 |
| II       | Information regarding water sampling                                                                  | 51 |
| III      | Standards for chemical quality of drinking water (WHO, 1971)                                          | 52 |
| IV       | Irrigation water classification on the basis of EC and SSP (Wilcox, 1955)                             | 52 |
| V        | Irrigation water classification based on TDS (Freeze and Cherry, 1979)                                | 53 |
| VI       | Irrigation water classification based on SAR (Todd, 1980)                                             | 53 |
| VII      | Classification of irrigation water based on hardness (Sawyer and McCarty, 1967)                       | 53 |
| VIII     | Acceptable range In drinking water                                                                    | 53 |
| IX       | Temerature, pH, EC and TDS of ground water samples of Birol                                           | 54 |
| Х        | Temerature, pH, EC and TDS of ground water samples of<br>Bochagonj                                    | 55 |
| XI       | Cationic constituents of the collected ground water samples of<br>Birol                               | 56 |
| XII      | Cationic constituents of the collected ground water samples of<br>Bochagonj                           | 57 |
| XIII     | Anionic constituents of the collected ground water samples of<br>Birol                                | 58 |
| XIV      | Anionic constituents of the collected ground water samples of<br>Bochagonj                            | 59 |
| XV       | SAR, H <sub>T</sub> , SSP, PI and Kelly's ratio of ground water samples of Birol                      | 60 |
| XVI      | SAR, H <sub>T</sub> , SSP, PI and Kelly's ratio of ground water samples of Bochagonj                  | 61 |
| XVII     | Diagram for classification of irrigation waters (Richards, 1968).                                     | 62 |
| XVIII    | Quality classification and suitability assessment of water<br>samples for irrigation in Birol Upazila | 63 |

## LIST OF APPENDICES

| APPENDIX | TITLE                                                      | PAGE |
|----------|------------------------------------------------------------|------|
| NO.      | TITLE                                                      | NO.  |
| XIX      | Quality classification and suitability assessment of water | 66   |
|          | samples for irrigation in Bochagonj Upazila                |      |
| XX       | Quality classification and suitability assessment of water | 68   |
|          | samples for drinking in Birol Upazila                      |      |
| XXI      | Quality classification and suitability assessment of water | 70   |
|          | samples for drinking in Bochagonj Upazila                  |      |

# LIST OF APPENDICES (Contd.)

## **CHAPTER I**

## **INTRODUCTION**

Water is the fluid of life not only for human beings but also for any living organism. Water is abundant on the planet as a whole, but fresh potable water is not always available at the right place in the right quantity for human or ecosystem use. The main sources of water in Bangladesh are surface waters in rivers, reservoirs, lakes, canals and ponds, and the ground water in deep and shallow aquifer (Ahmed and Rahman, 2000). Ground water is the major source of drinking and other domestic water uses in many countries including Bangladesh. It has long been utilized as a readily accessible and stable source of water supply for domestic, industrial and agricultural use throughout the world (Keishiro, 2006).

In the global water resources, about 97.2% is salt water mainly in oceans, and only 2.8% is available as freshwater. Out of 2.8%, about 2.2% is available as surface water and 0.6% as ground water (Raghunath, 1987). At present one fifth of all the water used in the world is obtained from ground water sources. Agriculture is the greatest uses of water accounting for 80% of all consumption. The total irrigated area is about 3986235 ha of which (73-74%) areas is irrigated by ground water (BBS, 1997). In dry season (Jan-April), irrigation from the surface water is not economically feasible for most of the areas of river or small perenial streams. Thus ground water becomes the only dependable source of water supply for irrigation. Water quality for irrigation is an utmost important for successful crop production as it contains different ions in varying concentrations. If low quality of water is used for irrigation, toxic elements may accumulate in the soils and deteriorates soil properties. Therefore, the necessity for the assessment of suitability of ground water resources for drinking and irrigation purposes is becoming increasingly important and is demonstrated by the relatively large number of recent studies in this field (Peiyue *et al.* 2011; Tadesse *et al.* 2009).

There are several factors such as ions, salts, heavy metals, toxic elements, fertilizers, pesticides, insecticides and industrial wastages etc. that affect water quality and make the water quality poor. Using this poor quality water, it might deteriorate soil properties, crops yield and quality (Sarker *et al.* 2000). Alfalfa yield decreased by irrigating with poor quality water was reported by Prunty *et al.* (1991). High concentration of Na, B, Cl

and  $HCO_3$  ions of water affects directly the soils and crop yield (Sarker *et al.* 2000; Sarker *et al.* 2009). Osmotic effects of excessive salinity cause adverse soil physical properties and reduce crop growth. Salts from the irrigation water accumulate in the soil profile and cause soil dispersion and surface seal development during irrigation, thus decreasing infiltration rate and amount (Sarker, 2001).

Water generally contains different species of cations and anions in varying amounts. The principal soluble ions are Ca, Mg, Na, and K as cations and Cl, SO<sub>4</sub>, CO<sub>3</sub> and HCO<sub>3</sub> as anions. Besides these, Cu, PO<sub>4</sub>, Fe, Mn, Zn, As, B, Si and F are present in small amounts. Out of soluble constituents Ca, Mg, Fe, Na, Cl, HCO<sub>3</sub>, SO<sub>4</sub> and B are of prime importance in determining the quality and suitability of irrigation water, especially for rice. Certain soluble ions at relatively high concentrations have a direct toxic effect on sensitive crops. The toxic elements are B, Na, Cl and Li. Specific water may be suitable for irrigation but may not be suitable for drinking and industrial uses due to presence of some other ions at toxic level. Most toxic elements for drinking water are As, Cd, Cr, Cl, Pb, Hg, Fe and Zn. The quality of water is generally judged by its total salts concentrations, relative proportion of cations or sodium absorption ratio (SAR) and the contents of HCO<sub>3</sub>. The concentrations of some important chemical constituents of water are necessary to assess their suitability for irrigation, drinking and industrial uses.

Ground water seems to be pure and free from suspended materials in comparison to surface water, yet many compound and/or ions in varying amounts may be present in dissolved and/or ionic forms. If low quality water is used for drinking, domestic and beneficial uses, ionic toxicity as well as health hazards may occur. Sometimes, those substances are found at an objectionable level in ground water and considered as contaminated. When these waters are used in various irrigation, drinking and industrial purposes, they deteriorate the quality of the products. For the production of different products, there is a different limit of various variables such as pH, Total Dissolved Solids (TDS), Hardness (H<sub>T</sub>), temperature and some ionic constituents. Besides these, chlorine and sulfate are the important variables to determine the toxicity and suitability of the water for industrial usage (Raghunath, 1987).

Proper utilization and overall management of ground water resources are important from the view point of it's after effects and economic viability, especially where huge volume of water is to be extracted from underground storage for large scale utilization. It's judicial utilization depends on reliable information of the static water level. Unplanned extraction from underground reservoir may lead to ground water over draft which may cause a number of long-term adverse effects including the irreparable geo-technical problem of land subsidence (Mojid, 1993).

Some studies on the assessment of water quality in some areas of Bangladesh namely Birganj, Dinajpur sadar, Dimla, Chirirbandar, Noakhali, Madhupur, Trishal, Sherpur, Meherpur, Shahjadpur upazila, etc has been conducted. Most of the chemical analysis of these studies included pH, EC, Ca, Mg, Na, K, HCO<sub>3</sub>, Cl, Fe, Mn, Cu and Zn. But a little attention has been given to the concentration of micronutrients, toxic elements and static water level.

In the study area, there are different water sources in which deep tube well was mainly applied for irrigation. In cropping sequences; rice, vegetable and Rabi crops were also found to be cultivated. Farmers apply irrigation water from ground water sources without testing its quality. But there is no organization to assess the extent of water toxicity systematically at field level. Keeping all these facts in mind, this area was selected to evaluate the toxicity levels and static water level of ground water.

## **Objectives:**

An attempt has been made to conduct a research work with the following objectives:

- 1. To assess the degree of ionic toxicity of ground water sources.
- 2. To categorize ground waters on the basis of standard criteria.
- 3. To predict the suitability and acceptability of ground water for irrigation uses.

## **CHAPTER II**

## **REVIEW OF LITERATURE**

Water is a universal solvent and contains variable quantities of inorganic and organic substances. Sometimes, suspended and colloidal materials are also found in it. It is necessary to determine the quality of water and its possible effects on soil properties due to long term irrigation and it's suitability for drinking and industrial usage. Few research works have been conducted on this perspective at home and abroad. But systematic research work on the Dinajpur is limited. An attempt has been made in this chapter to review the pertinent research information related to water quality assessment and static water level. Some relevant research reports are mention here under the following heads:

## 2.1 pH

The pH of ground water collected from Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division varied from 5.27 to 7.99 (Ahsan, 2004). The pH values of ground water collected from Kushtia and Chuadanga district ranged between 6.87 to 7.43 (Azad, 2004). The pH of ground water collected from Pabna sadar upazilla under Pabna district varied from 7.50 to 8.20 reflecting acidic to alkaline in nature (Arefin, 2002). The pH of ground water collected from Sherpur upazilla under Bogra district varied from 4.20 to 8.80 reflect in acidic to alkaline properties (Rahman, 2000). Sen *et al.*, (2000) found that the pH of water sources at Tongi were within the range of 6.69 to 7.63.

The pH of ground and surface waters of Meherpur ranged from 7.80 to 8.10 and all waters under test were not problematic for irrigating agricultural crops (Quddus and Zaman, 1996). Ground water pH of Phulbari thana under Mymensingh district was within the range of 8.10 to 8.30 (Shahidullah, 1995). In ground water samples collected from Gazipur recorded the pH ranging from 7.25 to 8.62 (Quayum, 1995).

The pH of ground and surface water of Nilphamari district was 6.81 to 7.81 indicated slightly acidic to slightly alkaline as per Luna (2010). Groundwater pH in Gaibandha aquifers varied from 6.73 to 8.66 (Jesmin, 2000). Ground and surface water pH of Matiranga thana in Khagrachari district ranged from 4.02 to 7.54 indicating acidic to slightly alkaline (Helaluddin, 1996).

### 2.2 Electrical conductivity and salinity

The electrical conductivity (EC) from Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division were found 19.57 to 1655.40 µS cm<sup>-1</sup> (Ahsan, 2004). The EC of 85 ground water samples collected from Kushtia and Chuadanga districts were found to range from 412 to 1331 µScm<sup>-1</sup> (Azad, 2004). The EC value of 46 ground water samples collected from Pabna sadar upazilla were found from 0.47 to 0.90 dS cm<sup>-1</sup> (Arefin, 2002). The EC of 50 ground water samples collected from Sherpur upazilla under Bogra district were found to range from 442.80 to 670.80 µScm<sup>-1</sup> (Rahman, 2001). Sen et al. (2000) carried out an experiment to determine water quality of irrigation at Tongi aquifer under the district of Gazipur and observed that the EC of surface and ground water ranged from 185 to 992 µScm<sup>-1</sup> and the EC of ground water collected from Muktagacha ranged from 246 to 416 uS cm<sup>-1</sup> (Hossain and Ahmed, 1999). Alamgir et al. (1999) examined ground water samples of Madhupur tract and indicated that EC values ranged from 230 to 350 uS cm<sup>-1</sup> where all the ground water samples under test were graded as low to medium salinity class. Another investigation was earned out by Rahman and Zaman (1995) at Shahjadpur Thana under Sirajgonj and stated that the EC of some selected rivers and ground waters used for irrigation was within the range of 500 to 834  $\mu$ Scm<sup>-1</sup>. The EC values of 15 ground water samples collected from Pangsha Thana of Rajbari district varied from 240 to 670 µscm<sup>-1</sup> (Zaman and Mohiuddin, 1995). Gupta (1984) revealed that groundwater quality deteriorated with increasing the soil depth and the EC value varied from 4 to 74 µscm<sup>-1</sup> at 13 to 38m depth and also from 31 to  $448 \text{ dsm}^{-1}$  at 38 to 210 m depth.

### 2.3 Total dissolved solids

The total dissolved solids (TDS) of ground water of Eastern Surma Kushiara flood plain and neighbouring regions of Sylhet division varied from 13.87 to 1036.88 mg L<sup>-1</sup> (Ahsan, 2004). The TDS of Kushtia and Chuadanga districts ranged from 247.78 to 870.45 mg L<sup>-1</sup> (Azad, 2004). The total dissolved solids of ground water of Pabna sadar upazila under Pabna district ranged from 336.26 to 671.89 mg L<sup>-1</sup> (Arefin, 2002). The total dissolved solids of ground water of Sherpur under Bogra district ranged from 194.85 to 458.48 mg L<sup>-1</sup> (Rahman, 2001). The TDS of some surface and ground water of Tongi under Gazipur district ranged from 123 to 675 mg L<sup>-1</sup> (Sen *et al.*, 2000). The values of TDS of ground water in Sherpur sadar under Sherpur district ranged within the limit of 112 to 358 mg  $L^{-1}$  (Hoque, 2000). Quddus and Zaman (1996) cited that the TDS were within the range of 282 to 462 mg  $L^{-1}$  in irrigation water of both surface and ground water sources of Meherpur Sadar under the district of Meherpur.

The TDS of irrigation water collected from sadar thana under Gazipur district ranged from 70 to 260 mg  $L^{-1}$  (Quayum, 1995). Zaman and Majid (1995) stated that the ground waters of Madhupur thana under Tangail district contained TDS ranging from 100 to 600 mg  $L^{-1}$  showing freshwater in quality.

### **2.4 Cations**

## 2.4.1 Calcium, magnesium, sodium and potassium

Roy et al., (2012) reported that Ca content in Comilla was from 0.70 to 7.41 meg L<sup>-1</sup>. The major cations basically Ca, Mg, Na and K collected in ground water samples from Lakshmipur and Noakhali district ranged from 1.37 to 35.60, 6.44 to 38.21, 1.3 to 55.78 and 9.1 to 90.66 mg  $L^{-1}$ , respectively (Uddin, 2005). The concentration of Calcium (Ca), Magnesium (Mg), Sodium (Na) and Potassium (K) in ground water samples collected from Eastern Surma Kushiara flood plain and neighbouring regions of Sylhet division ranged from 0.42 to 61.7, 0.017 to 41.0, 0.7 to 228 and 0.7 to 130 mg  $L^{-1}$ , respectively (Ahsan, 2004). Ca, Mg, Na and K contents in ground water of Pabna sadar upazila ranged from 0.80 to 3.80, 1.50 to 4.30, 0.02 to 0.07 and 0.06 to 0.14 meL<sup>-1</sup>, respectively (Arefin, 2002) and those of Sherpur upazila under Bogra district ranged from 0.50 to 2.50, 0.80 to 3.60, 0.10 to 1.36 and trace to 0.22 meg  $L^{-1}$ , respectively (Rahman, 2001). Sen et al., (2000) observed that the concentrations of Ca, Mg, Na and K in Tongi aquifers ranged from 0.50 to 3.21, 0.70 to 5.13. 0.20 to 2.28 and 0.12 to 0.59 meq  $L^{-1}$ , respectively. Quddus and Zaman (1996) reported that Ca, Mg, Na and K contents in surface and ground water of Meherpur ranged from 2.06 to 2.80, 1.01 to 1.60, 0.28 to 0.68 and 0.12 to 0.32 meq  $L^{-1}$ , respectively.

Shahidullah (1995) reported that the concentrations of Ca, Mg, Na and K in ground water of Phulphur thana under Mymensingh district ranged from 1.40 to 2.65, 0.65 to 1.08. 0.23 to 1.40 and 0.04 to 0.26 meq  $L^{-1}$ , respectively and of ground water samples collected from some villages of Madhupur thana under Tangail district varied from 0.72 to 3.12, 0.78 to 3.12, 0.10 to 0.80 and 0.14 to 0.58 meq  $L^{-1}$ , respectively (Zaman and Majid, 1995). Quayum (1995) showed that the ground water collected from Gazipur sadar thana

contained Ca, Mg, Na and K within the range of 0.55 to 1.65, 0.04, 0.43 to 1.00 and 0.02 to 0.05 meq L<sup>-1</sup>, respectively. Mitra and Gupta (1999) observed that during monsoon season, Ca, Mg, Na and K contents in tubewell water in vegetable growing area around Kolkata were 8.00, 3.40, 1.30 and 0.50 meq L<sup>-1</sup> while in winter season the concentrations of those cations were 9.00, 4.20, 1.60 and 0.90 meq L<sup>-1</sup>, respectively. Pucci *et al.* (1992) carried out an experiment on confixing unit effects on water quality in the New Jersey Coastal Plain and stated that the concentrations of Ca and Mg ranged from 1.70 to 666.00 mg L<sup>-1</sup> and 0.30 to 140.00 mg L<sup>-1</sup>, respectively.

#### 2.4.2 Zinc

The concentration of Zinc (Zn) in collected ground water samples of Eastern Surma and Kushiara Flood plain and neighbouring regions of Sylhet division ranged from 0.002 to 0.02 mg L<sup>-1</sup> (Ahsan, 2004), and in Kushtia and Chuadanga districts it varied from trace to 0.05 mg L<sup>-1</sup> (Azad, 2004). Quddus and Zaman (1996) reported that the concentrations of Zn in surface and ground water of some villages in Meherpur sadar varied from traces to 0.1 mg L<sup>-1</sup>.

The content of Zn in ground waters of Gazipur sadar thana varied from trace to 0.05 mg  $L^{-1}$  (Quayum, 1995). Rahman and Zaman (1995) studied the river and ground water to assess the quality for irrigation purposes and observed that Zn concentration varied from 0.023 to 0.045 mg  $L^{-1}$ . Mohiuddin (1995) showed that the collected irrigation water samples of Pangsha thana of Rajbari district contained the range of Zn was 0.02 to 0.05 mg  $L^{-1}$ . The concentration of Zn in ground waters of Phulbari thana under Mymensingh district was in the range of 0.01 to 0.03 mg  $L^{-1}$  (Shahidullah, 1995).

## 2.4.3 Iron

The concentration of Fe in ground water samples collected from Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division varied from 0.05 to 61.0 mg L<sup>-1</sup> (Ahsan, 2004), and in ground water samples of Kustia and Chuadanga districts ranged from 0.07 to 8.32 mg L<sup>-1</sup> (Azad, 2004). Iron concentration in ground water of Pabna sadar upazila varied from 0.028 to 0.488 mg L<sup>-1</sup> (Arefin, 2002), in Sherpur aquifers under Bogra district it varied from 0.07 to1.25 mg L<sup>-1</sup> (Rahman, 2000). Sen *et al.*,(2000) reported that concentrations of Fe in surface and ground water collected from Torigi aquifers ranged from trace to 0.09 mg L<sup>-1</sup>.

The concentration of Fe in ground water of Phulpur thana under Mymensingh district was within the range of 0.10 to 1.30 mg L<sup>-1</sup> (Shahidullah, 1995). Quayam (1995) reported that Fe<sup>-1</sup>. The irrigation water samples of Pangsha thana of Rajbari contained Fe within the range of 0.10 to 2.00 mgL<sup>-1</sup> (Mohiuddin, 1995). Rahman (1993) reported that the surface and ground water of Shahzadpur thana in Sirajgonj district contained Fe within the range of 0.10 to 0.42 mg L<sup>-1</sup> and iron was dominant in ground water compared to surface water. Quddus (1993) cited that the concentration of Fe in surface and ground water of Meherpur sadar thana ranged from traces to 0.05 mg L<sup>-1</sup>.

#### 2.4.4 Manganese

The concentration of Mn in collected ground water samples of Eastern Surma and Kushiara flood plain and neighbouring regions of Sylhet livision ranged from 0.015 to  $3.97 \text{ mg L}^{-1}$  (Ahsan, 2004), and in Kushtia and Chuadanga districts it varied from trace to 0.18 mg L<sup>-1</sup> (Azad, 2004). Manganese concentration in ground water of Pabna sadar upazila varied from 0.008 to 0.403 mg L<sup>-1</sup> (Arefin, 2002), in Sherpur upazila under Bogara district it ranged from 0.01 to 0.81 mg L<sup>-1</sup> (Rahman, 2001).

The concentrations of Mn in surface and ground water collected from Tongi aquifers ranged from traceto 0.30 mg L<sup>-1</sup> (Sen *et al.*, 2000). The concentration of Mn in groundwaler of Muktagacha thana ranged from 0.02 to 0.86 50  $\mu$ g L<sup>-1</sup> with the average value of 0.29 50  $\mu$ g L<sup>-1</sup> (Hossain and Ahmed, 1999).

Quayum (1995) reported that Mn content in ground water of Gazipur sadar thana varied from trace to 0.20 mg L<sup>-1</sup> and Hahidullah (1995) found that the concentrations of Mn in ground water of Phulpur thana under Mymensingh district was within the range of 0.02 to 0.05 mg L<sup>-1</sup>. The collected irrigation waters of Pangsha Thana of Rajbari district contained Mn within the range 0.01 to 0.07 mg L<sup>-1</sup> (Mohiuddin, 1995). In Meherpur Sadar thana it ranged from trace to 0.20 mg L<sup>-1</sup> (Quddus, 1993).

Zaman *et al.*, (2000) conducted a study at three upazillas (Bagmara, Mahadebpur and Nachoul) in Barind area and observed that the mean values of Mn in groundwaters were 0.11, 0.134 and 0.0478 mg L<sup>-1</sup>, respectively. Helaluddin (1996) stated that Mn content in surface and groundwater in Khagrachari district varied from trace to 0.70 mg L<sup>-1</sup>.

#### 2.5 Anions

#### 2.5.1 Sulphate

The concentration of sulphate (SO<sub>4</sub>) in Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division ranged from 0.01 to 18.00 mg L<sup>-1</sup> (Ahsan, 2004). Azad (2004) mentioned that ground water in Kushtia and Chuadanga districts contained SO<sub>4</sub> within the range of 0.02 to 40.4 mg L<sup>-1</sup>. The concentration of SO<sub>4</sub> in ground water of Panba sadar upazila ranged from 0.14 to 5.58 mg L<sup>-1</sup> (Arefin, 2002). Rahman (2001) mentioned that the collected ground water samples of Sherpur upazila under Bogra district contained SO<sub>4</sub> within the range of trace to 10.30 mg L<sup>-1</sup>. The surface and ground water of Tongi under Gazipur district contained SO<sub>4</sub> within the range of trace to 11.00 mg L<sup>-1</sup> (Sen *et al.*, 2000). Zaman and Majid (1995) stated that the concentrations of SO<sub>4</sub> in ground water in some villages of Madhupur under Tangail district ranged from 0.12 to 2.16 meq L<sup>-1</sup> (Rahman and Zaman, 1995). The contents of SO<sub>4</sub> in surface and ground water in some village of Meherpur sadar under Meherpur district varied from trace to 7.20 meq L<sup>-1</sup> (Quddus and Zaman, 1996).

#### 2.5.2 Phosphate

Phosphate content of ground water samples of Eastern Surma Kushiara flood plain and neighbouring regions of Sylhet division aquifers varied from 0.041 to 12.00 mg L<sup>-1</sup> (Ahsan, 2004). The contents of PO<sub>4</sub> collected ground waters samples of Kushtia and Chuadanga districts ranged from 0.31 to 7.66 mg L<sup>-1</sup> (Azad, 2004). The concentration of PO<sub>4</sub> in ground water of Pabna sadar upazila ranged from trace to 0.19 mg L<sup>-1</sup> (Arefin, 2002). The concentration of PO<sub>4</sub> in surface and ground water collected from Tongi varied from trace to 0.05 mg L<sup>-1</sup> (Sen *et al.*, 2000).

The content of PO<sub>4</sub> in surface and ground water samples collected from Bhaluka upazila under Mymensingh district ranged from trace to 0.47 mg L<sup>-1</sup> (Nizam, 2000) and that of Muktagacha aquifers ranged from 0.10 to 1.40 mg L<sup>-1</sup> with the mean value of 0.85 mg L<sup>-1</sup> (Hossain and Ahmed, 1999).An experiment was earned out by Zaman and Majid (1995) to evaluate the ground water pollution at Rajbari districtand showed that the PO<sub>4</sub> concentration in all collected water samples ranged from0.02to 0.09 mg L<sup>-1</sup>. The PO<sub>4</sub> content of surface, shallow and deep tubewell water of Meherpur sadar under Meherpur district ranged from 0.12 to 0.32 mg L<sup>-1</sup> (Quddus and Zaman, 1996). Phosphate content of groundwaters collected from Bagmara, Mahadebpur and Nachoul upazilas varied from trace to 0.07, trace to 0.22 and 0.03 to 0.45 mg  $L^{-1}$ , respectively (Zaman, 2000).

### 2.5.3 Carbonate and Bicarbonate

The concentration of CO<sub>3</sub> in Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division was not detectable and the concentration of HCO<sub>3</sub> ranged from 8.5 to 569.1 mg L<sup>-1</sup> (Ahsan, 2004), and In Kushtia and Chuadanga districts, the amount of CO<sub>3</sub> in all the ground water samples varied from trace to 25.8 mg L<sup>-1</sup> and HCO<sub>3</sub> concentration was within the range of 115.33 to 475.96 mg L<sup>-1</sup> (Azad, 2004), in Pabna sadar upazila CO<sub>3</sub> was not detectable and the concentration of HCO<sub>3</sub> ranged from 3.50 to 7.00 meq L<sup>-1</sup> (Arefm, 2002). In Madhupur Tract, the concentration of CO3 in water ranged from trace to 2.00 mg L<sup>-1</sup> and HCO<sub>3</sub> content varied from 0.50 to 8.00 meq L<sup>-1</sup> (Nizam, 2000). Sen *et al.*, (2000) found that in ground water of Tongi under Gazipur district the concentration HCO<sub>3</sub> varied from 0.80 to 6.20 meq L<sup>-1</sup>.

Ali (1997) assessed the ground water quality of high Barind Tract and showed that HCO<sub>3</sub> content of those waters varied from 2.00 to 5.40 meq L<sup>-1</sup>. All the samples contained HCO<sub>3</sub> and CO<sub>3</sub> within the range of 0.60 to 0.85 meq L<sup>-1</sup> (Razzaque, 1995). Zaman and Majid (1995) found that ground water of Meherpur Sadar under Meherpur district contained CO<sub>3</sub> and HCO<sub>3</sub> within the range of 0.04 to 0.04 and 0.80 to 2.52 meq L<sup>-1</sup>, respectively in Pangshathana under Rajbari district these ranged from 0.16 to 1.12 and 2.24 to 3.52 meq L<sup>-1</sup>, respectively (Zaman and Mohiuddin, 1995).

## 2.5.4 Chloride

The concentration of Cl in groundwatcr of Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division ranged from 0.40 to 156.7 mg L<sup>-1</sup> (Ahsan, 2004), and Azad (2004) reported that the concentration of Cl in Kushtia and Chuadanga districts aquifers varied from 5.30 to 80.50 mg L<sup>-1</sup>. The concentration of Cl in ground water of Pabna sadar upszila ranged from 0.80 to 1.40 meq L<sup>-1</sup> (Arefin, 2002). Rahman (2001) mentioned that the collected ground water samples of Sherpur upazila under Bogra district contained Cl within the range of 0.40 to 2.40 meq L<sup>-1</sup>. Surface and ground water samples in Tongi under Gazipur district contained Cl within the limit of 0.80 to 4.80 meq L<sup>-1</sup> (Sen *et al.*, 2000). Nizam (2000) sated that Cl content in all ground and surface waters of Madhupur Tract ranged from 0.2 to 2.6 meq L<sup>-1</sup> and in Muktagacha aquifers it

varied from 0.20 to 0.70 meq L<sup>-1</sup> (Hossain and Ahmed, 1999). The Cl in irrigation water collected from Meherpur sadar it varied from 0.75 to 0.95 meq L<sup>-1</sup> (Quddus and Zaman, 1996) and in Pangsha thana under Rajbari district it ranged from 0.24 to 2.25 meq L<sup>-1</sup> (Zaman and Mohiuddin, 1995). Mitra and Gupta (1999) stated that Cl content in tubewell water used for irrigation duringboth monsoon and winter seasons were 45.60 and 55.20 mg L<sup>-1</sup>, respectively.

### 2.6 Sodium adsorption ratio (SAR)

The computed sodium adsorption ratio (SAR) of ground water of Lakshmipur and Noakhali district ranged from 0.40 to 4.20 (Uddin, 2005). The computed sodium adsorption ratio (SAR) of ground water from Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division ranged within 0.082 to 35.79 (Ahsan, 2004), and in Kushtia and Chuadanga district it ranged from 0.08 to 1.19% (Azad, 2004). The SAR of ground water of Pabna sadar upazila ranged from 0.38 to 1.05 with the mean value of 0.74 (Arefin, 2002), that of Sherpur upazila in Bogra district it ranged from 0.22 to 0.90 (Rahman, 2001) and in Sherpur sadar under Sherpur district ranged from 0.07 to 2.69 (Hoque, 2000), and Ahmed (1999) observed that the SAR of ground water of Muktagacha thana under Mymensingh district varied from 0.35 to 4.31.The SAR of ground water of Nachoul thana at high Barind Tract ranged from 0.36 to. 2.70 Ali (1997). Quddus and Zaman (1996) analyzed waters collected from some villages of Meherpur sadar under Meheipur district and stated that the SAR ranged from 0.21 to 0.49. The SAR of water samples of Gazipur sadar varied from 0.50 to 0.94 as reported by Quayum (1995).

The SAR values of surface and ground waters collected from Shahzadpur thana under Sirajgonj district varied from 0.56 to 0.85 (Rahman and Zaman, 1995). SAR values of the irrigation waters of Madhupur under Tangail district were categorized as low alkalinity hazard (S1) (Zaman and Majid, 1995).

#### 2.7 Soluble sodium percentage (SSP)

Soluble sodium percentage (SSP) values in ground water of Lakshmipur and Noakhali district ranged from 17.03 to 90.92% (Uddin, 2005). The soluble sodium percentage (SSP) values in ground water of Eastern Surma Kushiara flood plain and neighbouring region of Sylhet division were within the range of 6.43 to 98.61% (Ahsan, 2004), that of

Kushtia and Chuadanga districts ranged from 4.38 to 28.98% (Azad, 2004) and in Pabna sadar upazila ranged from 11.85 to 28.85% (Arefin, 2002).

Ali (1997) analyzed ground water of Nachoul upazila at High Barind Tract and found that the SSP of those waters varied from 17.00 to 51.56%. Quddus and Zaman (1996) showed that the SSP of those waters was within the limit of 8.14 to 14.70% and all water was excellent in class. Quayum (1995) found that the values of SSP ranged from 18.31 to 40.95% in ground water of Gazipur sadar under the district of Gazipur. The SSP of ground water of Shahzadpur thana under Sirajgonj district were within the limit of 13.18 to 21.93% (Rahman and Zaman, 1995).

SSP values of ground water of Phulpur thana under Mymensingh district ranged from 6.81 to 28.99%, (Shahidullah, 1995). The SSP of ground water of Madhupur thana under Tangail district varied from 2.14 to 31.50% (Zaman and Majid, 1995). Another study was conducted by Zaman and Mohiuddin (1995) and the SSP of Pangsha thana under Rajbari district fluctuated from 14.91 to 46.67% and all waters under test were graded as 'excellent', 'good' and permissible classes.

### 2.8 Residual sodium carbonate (RSC)

The residual sodium carbonate (RSC) values of ground water collected from Lakshmipur and Noakhali district ranged from -1.21 to 3.13 meq L<sup>-1</sup> (Uddin, 2005). The residual sodium carbonate (RSC) values of ground water collected from Eastern Surma Kushiara flood plain and neighbouring regions of Sylhet division fluctuated between -1.002 to 7.5 meq L<sup>-1</sup> (Ahsan, 2004) and that of Kushtia and Chuadanga districts varied from -6.799 to -0.204 meq L<sup>-1</sup> (Azad, 2004) and of Pabna sadar upazila ranged from 1.80 to 0.10 meq L<sup>-1</sup> (Arefin, 2002).

The RSC values of ground water samples of Sherpur upazila in Bogra district were found between -0.10 to 2.40 meq L<sup>-1</sup> (Rahman, 2001) that of Sherpur sadar under Sherpur district varied from 1.10 to -0.10 and 0.00 to 1.90 meq L<sup>-1</sup> (Haque, 2000). Nizam (2000) stated that the RSC values of surface and ground water collected from Madhupur Tract fluctuated between -0.30 to 5.8 meq L<sup>-1</sup>. Sen *et al.*, (2000) observed that ground and surface water samples in Tongi aquifers contained RSC within the limit of trace to 11.00 meq L<sup>-1</sup>. The value of RSC of ground water of Narayangonj aquifers fluctuated between 0.64 to 2.93 meq L<sup>-1</sup>with the mean value of-1.84 meq L<sup>-1</sup> (Sarker, 1997). Zaman and Mohiuddin (1995) observed that RSC values were below 1.25 meq L<sup>-1</sup> and the RSC value of ground water samples from Shahzadpur thana, Sirajgonj district were negative which meant that all samples were free from residual sodium carbonate and were suitable for irrigation (Rahman and Zaman, 1995). The concentration of RSC in groundwater samples from Avinashi, Pollachi and Palladam in Tamil Nadu varied from 5.0 to 7.5 meq L<sup>-1</sup> (Latha *et al*, 2002).

#### 2.9 Hardness

The hardness ( $H_T$ ) of ground water samples in Lakshmipur and Noakhali district ranged from 29.83 to 217.13 mg L<sup>-1</sup> (Uddin, 2005). The hardness ( $H_T$ ) of ground water samples in Eastern Surma Kushiara flood plain and neighbouring regions of Sylhet division fluctuated between 3.71 to 322.35 mg L<sup>-1</sup> (Ahsan, 2004), and the hardness in ground water of Pabna sadar upazila ranged from 183.08 to 376.72 mg L<sup>-1</sup> (Arefin, 2002).

Rahman (2001) mentioned that  $H_{T}$  values ranged from 84.9 to 265.9 mg L<sup>-1</sup> in ground water of Sherpur upazila in Bogra district. The hardness of ground and surface waters collected from Bhaluka upazila under Mymensingh district varied from 29.94 to 304.39 mg L<sup>-1</sup> (Nizam, 2000).

The ground water of Pangsha thana under Rajbari district were in moderately hard and 'hard' classes (Zaman and Mohiuddin, 1995). Quddus and Zaman (1996) stated that some surface and ground water used for irrigation at Meherpur sadar under Meherpur district were rated as 'hard' in quality. Rahman and Zaman (1995) observed that  $H_T$  varied from 159.83 to 324.20 mg L<sup>-1</sup>. The ground waters samples collected from Gazipur sadar under Gazipur district were in 'soft' class (Quayum, 1995). Helaluddin (1996) studied 88 water samples of surface and ground sources collected from the Khagrachari Hill district and revealed that the  $H_T$  of pond and well waters varied from 2.93 to 46.72 and 1.27 to 16.90 mg L<sup>-1</sup>, respectively.

## **CHAPTER III**

## **MATERIALS AND METHODS**

Water quality is an important factor in using water for various purposes because its quality bears importance in successful crop production. The chemical analyses of ground water samples are necessary to assess the extent of ground water pollution caused by the higher concentration of dissolved constituents. An attempt has been taken to analyze ground water samples collected from 12 unions of Birol upazila and 6 unions of Bochagonj upazila under Dinajpur district and the chemical analyses include the estimation of pH, electrical conductivity (EC), total dissolved solids (TDS) and major ionic constituents like Ca, Mg, K, Na, Fe, Mn, Zn, Cu, P, SO<sub>4</sub>, CO<sub>3</sub> and HCO<sub>3</sub>.

### 3.1 Collection and preparation of ground water samples

#### 3.1.1 Site

Ground water sampling sites were selected from different places under Birol upazila and Bochagonj upazila in Dinajpur district.

#### 3.1.2 Collection of water samples

The first consideration for assessment of ionic toxicity of water is obtaining a sample or series of representative samples. Thirty six samples were collected during irrigation time. All the water samples were collected from different deep tubewells used for the study purposes. All sources of water have widely used as irrigation for the production of major agricultural crops such as cereals, pulses, fiber, spices and vegetable crops. The sites of water sampling for different sources of waters were shown in Figure 1, Figure 2 and Figure 3. The information of different water samples collected for analysis was mentioned in Appendix I and Appendix II. Water samples were collected in liter plastic bottles. These bottles were cleaned and washed with tap water followed by distilled water. Before sampling, containers were again rinsed 3 to 4 times with water to be sampled. The water carried to the laboratory of the Department of Agricultural Chemistry, HSTU, Dinajpur for testing. The samples were analyses as quickly as possible on arrival at the laboratory.

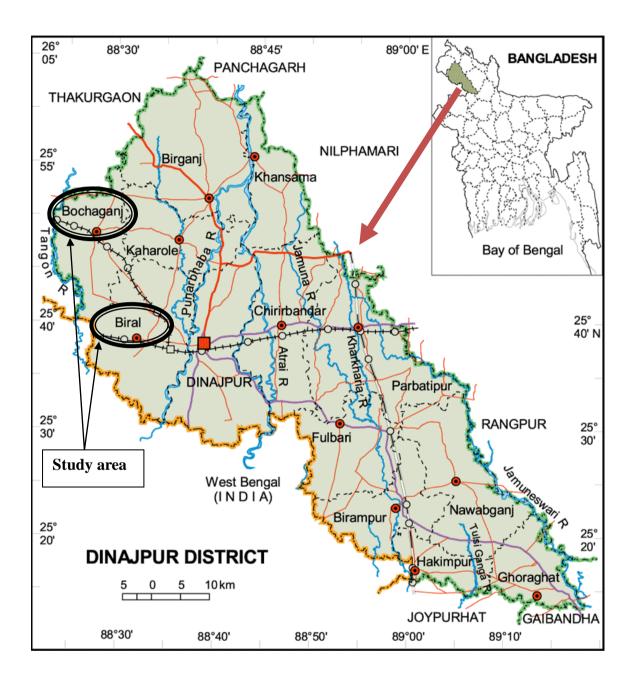



Figure 1: Map of the Dinajpur indicating the sampling sites along with the Bangladesh locating study area.

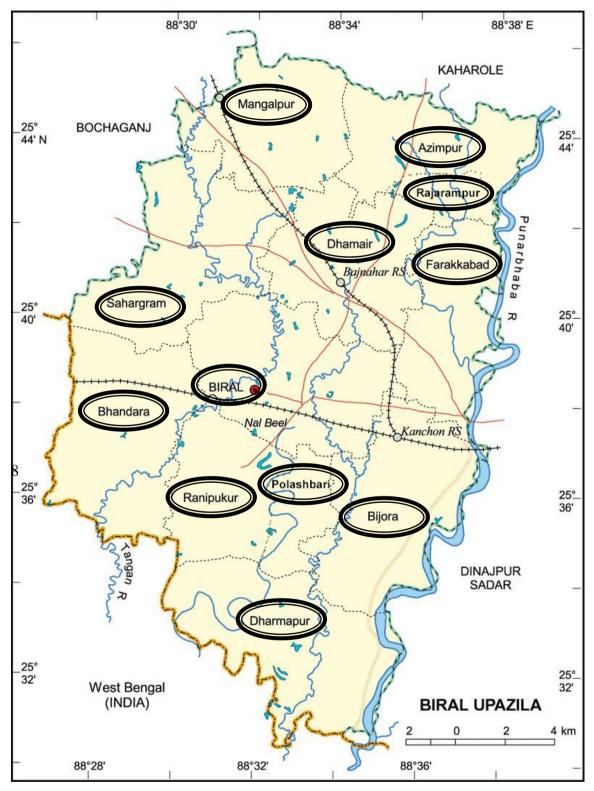



Figure 2: Map of the Birol upazila indicating the sampling sites along with the Bangladesh locating study area.

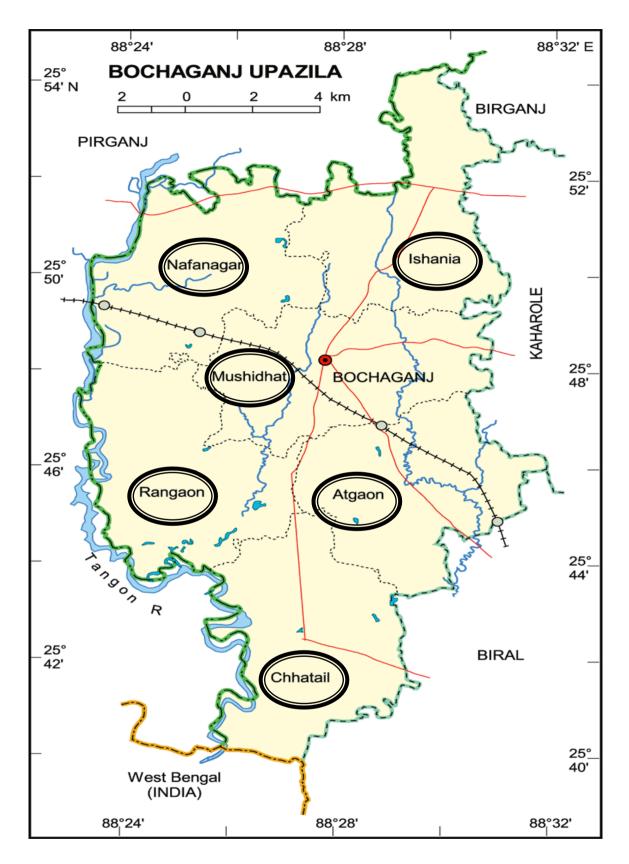



Figure 3: Map of the Bochagonj upazila indicating the sampling sites along with the Bangladesh locating study area.

### 3.2 Notes on Analytical Methods of Water Analysis

The major chemical constituents or compounds both ionic and nonionic forms which all essentially can take part in water pollution. The major chemical constituents or salient features considered for analyses were as follows:

A. Hydrogen ion concentration (pH)

B. Electrical conductivity (EC)

C. Total dissolved solids (TDS)

D. Ionic constituents, i) Calcium (Ca)

ii) Magnesium (Mg)

iii) Potassium (K)

iv) Sodium (Na)

v) Iron (Fe)

Vi) Manganese (Mn)

vii) Zinc (Zn)

viii) Copper (Cu)

ix) Phosphorus (P)

x) Bicarbonate (HCO<sub>3</sub>)

xi) Chloride (Cl)

xii) Sulphate (SO<sub>4</sub>)

- E. Sodium adsorption ratio (SAR)
- F. Soluble sodium percentage (SSP)

G. Residual sodium carbonate (RSC)

H. Total hardness and alkalinity.

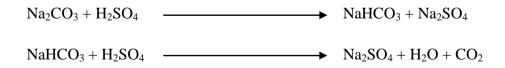
I. Permiability index (PI)

J. Kelly's ratio (KR)

## 3.2.1 pH

The pH of water sample were determined electrometrically following the procedure mentioned by Ghosh *et al.* (1983) using pH meters (Hanna instrument-211 model) in the laboratory of Agricultural Chemistry Department, Hajee Mohammad Danesh Science and Technology University, Dinajpur.

## **3.2.2 Electrical conductivity (EC)**


The electrical conductivity of a system actually represents the concentration of total dissolved solids (TDS) or total salinity in water excluding the amount of silica. The EC of collected water samples was determined by conductivity bridge (Harna instrument-HI8033 model) as outlined by Ghosh *et al.* (1983) in the laboratory of the Department of Soil Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur.

## 3.2.3 Total dissolved solids (TDS)

Total dissolved solids (TDS) was determined by weighing the solid residue obtained by evaporating a measured aliquot of filtered water samples to dryness, according to the procedure described by Chopra and Kanwar (1980).

## 3.2.4 Carbonate and bicarbonate

Carbonate and bicarbonates of water samples were determined by acidimetric method of titration using phenolphthalein indicator ( $C_{20}H_{14}O_4$ ) for carbonate. With dilute sulphuric acid, carbonate forms colourless and bicarbonate forms rose red colour complex at the end of titration. The carbonate and bicarbonates were estimated titrimetrically after Chopra and Kanwar (1980) and Ghose *et al.* (1983). The reactions are mentioned below:



#### 3.2.5 Nitrate nitrogen

Nitrate was determined by phenoldisulphonic acid method with the help of a spectrophotometer (Hitechi-U-2800) set at 420 nm wavelength. The water sample was evaporated to dryness over a water bath and after cooling, the yellow colour was developed by the reaction between nitrate and phenoldisulphonic acid in presence of ammonia (Ghosh *et al.*, 1983).

#### 3.2.6 Phosphorus

Phosphorus was determined colorimtrically from water samples using stannous chloride as reducing agent (Clesceri *et al.*, 1989). This method involved the formation of molybdophosphoric acid which was reduced to the intensity complex molybdenum blue by stannous chloride. The colour intensity was read at 660 nm wavelength with a spectrophotometer (Hitechi-U-2800) within 15 minutes after stannous chloride addition following the procedure outlined by Olsen *et al.*, (1954). The principal hypothetical reaction is as follows:

$$H_3PO_4 + 12 H_2MoO_4 \longrightarrow H_3P (Mo_3O_{10})_4 + 12H_2O$$

#### 3.2.7 Sulphate sulphur

Sulphate was estimated turbidimetrically with the help of spectrophotometer. Turbidimetric reagent (BaCl<sub>2</sub>.2H<sub>2</sub>O) was added in a definite volume of sample. Sulphate ion reacted with barium chloride to form barium sulphate. Reading was taken in spectrophotometer (Hitachi-U-2800) after 30 minutes of BaCl<sub>2</sub> addition al 425 nm wavelength following the methods of Wolf (1982).

### 3.2.8 Calcium

Complexometric titration was used for estimating the calcium from the water samples using disodium ethylene diamine tetraacetate ( $Na_2H_2C_{10}H_{12}O_{28}N_2.2H_2O$ ) as a chelating agent. This analytical method was carried on eliminating possible interfering ions such as Fe, Mn, Cu, Zn, Ni and PO<sub>4</sub> adding respective masking agents at pH 12 in presence of calcon indicator ( $C_{20}H_{13}N_2NaO_5S$ ). Sodium hydroxide (NaOH) was first added to the water samples for the precipitation of magnesium as insoluble magnesium hydroxide [Mg(OH)<sub>2</sub>]. Potassium ferrocyanide [K<sub>4</sub>Fe(CN)<sub>6</sub>.3H<sub>2</sub>O], hydroxylamine-hydrochloride (NH<sub>2</sub>OH.HCl) and triethano lamime ( $C_6H_{15}NO_3$ ) were added to eliminate this interference of various non-target ions (Page *et al.*, 1982).

#### 3.2.9 Magnesium

Magnesium was analysed by complexometric method of titration using disodium ethylene diamine tetraacetate (Na<sub>2</sub>H<sub>2</sub>C<sub>10</sub>H<sub>12</sub>O<sub>28</sub>N<sub>2</sub>.2H<sub>2</sub>O) as a chelating agent. This analytical method was practiced for eliminating possible interfering non-target ions in presence of Erichrome Black T indicator (C<sub>20</sub>H<sub>12</sub>N<sub>3</sub>NaO<sub>7</sub>S) with adjusting the required pH 10. To determine magnesium alone, calcium was first precipitated from water samples as calcium tumgastate (CaWO<sub>4</sub>) with sodium tungastate solution (Na<sub>2</sub>WO<sub>4</sub>.2H<sub>2</sub>O). Potassium ferrocyanide [K<sub>4</sub>Fe (CN)  $_{6.3}$ H<sub>2</sub>O], hydroxylaminehydrochloride (NH<sub>2</sub>OH.HCl) and triethanolamine (C<sub>6</sub>H<sub>15</sub>NO<sub>3</sub>) were also added to eliminate the competition of various ions (Fe, Mn, Cu, Zn and PO<sub>4</sub>) by the EDTA molecule in the raction after Page *et al.* (1982).

#### 3.2.10 Sodium and potassium

Sodium and potassium were determined with the help of a flame emission spectrophotometer by using sodium and potassium filters respectively. The sample was aspirated into a gas flame and excitation was carried out in a carefully controlled and reproducible conditions. The air pressure was fixed at 10 psi. The desired spectral line was isolated using interference filters. The intensity of light at 589 nm and at 768 nm is approximately proportional to the concentration of the elements sodium and potassium respectively. The percent emission was recorded following the methods outlined by Golterman (1971) and Ghosh *et al.* (1983).

#### 3.2.11 Zinc, copper, iron and manganese

Zinc, copper, iron and manganese were analysed by atomic absorption spectrophotometer (AAS Chemito-203) at the wavelengths of 213.8 nm, 324.8 nm, 248.3 nm and 279.5 nm respectively in the laboratory of Soil Chemistry Division, Bangladesh Agricultural Research Institute (BARI) following the procedure by Clesceri *et al.*, (1989).

### **3.3 Evaluation of Water Quality**

Whether a ground or surface water of a given quality is suitable for a particular purpose depends on the criteria or standards of acceptable quality for that specific use. Quality limits the water supplies for drinking, industrial and irrigation because of its extensive development for these purposes. The following formulae related to the irrigation water classes rating were computed from the data obtained by chemical analyses of water samples. The equations were-

a) Sodium Adsorption Ratio (SAR)

$$SAR = \frac{Na^{+}}{\sqrt{(Ca^{2+} + Mg^{2+})/2}}$$

b) Soluble Sodium Percentage (SSP)

$$SSP = \frac{Soluble Na concentration(mg/L)}{Total cation concentration(mg/L)} \times 100$$

c) Residual Sodium Carbonate (RSC)

$$RSC = (CO_3^{2-} + HCO_3^{-}) - (Ca^{2+} + Mg^{2+})$$

d) Hardness or Total Hardness (H<sub>T</sub>)

$$H_T = 2.5 \times Ca^{2+} + 4.1 \times Mg^{2+}$$

e) Potential Salinity = 
$$Cl^{-} + (SO_4^{2^{-}}/2)$$

f) Potential Index (P.I) = 
$$\frac{Na^{+} + \sqrt{HCO_{3}^{-}}}{Ca^{2+} + Mg^{2+} + Na^{+}}$$

g) Kelly's ratio = 
$$Na^{+} / (Ca^{2+} + Mg^{2+})$$

Where, concentrations of ionic constituents for calculating all parameters except hardness in mg  $L^{-1}$ .

#### **CHAPTER IV**

### **RESULTS AND DISCUSSION**

The ionic concentration of Ca, Mg, Na, K, Fe, Mn, Zn, Cu, P, SO<sub>4</sub> and HCO<sub>3</sub>, were present in variable quantities in the collected ground water samples. The advantage of water testing is initially judged from the nature and extent of its relationship with soil and crop. Rating of waters on the basis of chemical analyses is usually done after USEPA (United States Environmental Protection Agency) standards. These criteria are followed world wide by the scientists working on water quality. Different leading organizations also follow USEPA criteria such as FAO, UNICEF and USDA etc. The experimental findings described in the foregoing chapter are described and discussed here in the light and of relevant research reports wherever applicable. The concentration of major ions (Ca, Mg, Na, K, Fe, SO<sub>4</sub>, HCO<sub>3</sub> and Cl) was presented in Fig. 4 and Fig. 5 where the vertical bar diagrams presented major ionic concentrations. The major ground water quality determining indices (pH, EC, TDS, SSP and  $H_T$ ) was presented in Fig. 6 and Fig. 7 where the vertical bar diagrams presented majorground water quality determining indices.

The obtained result are described and discussed under following headings:

### 4.1 Ground water rating for irrigation

#### 4.1.1 pH

The pH value of water sample of Birol upazilla was within the range of 6.91 to 7.78 while the average value was 7.39 (Appendix IX) and the pH value of water sample of Bochagonj upazilla 6.56 to7.72 while the average value was 7.31 (Appendix X). Out of 36 samples, the pH of 30 samples (83.33 %) were found from 6.91 to 7.39 and the rest 6 samples (16.67%) water varied 7.40 to 7.78 for Birol upazilla butout of 18 samples, the pH of 9 samples (50 %) were found from 6.96 to 7.31 and the rest 9 samples (50%) water varied 7.31 to 7.72 for Bochagonj upazilla. The pH of water varied from 6.91 to 7.78 and 6.96 to 7.72 for Birol and Bochagonj upazilla, respectively indicated that the water were slightly acidic to alkaline. Out of 36 samples of Birol upazilla, 8 samples were below pH 7 and out of 18 samples of Bochagonj upazilla, 2 samples were below pH 7 and slightly acidic in nature and might be due to the presence of lower concentration of Ca, Mg, Na and HCO<sub>3</sub>. These water samples would be suitable for acid loving crops. The

remaining 28 samples for Birol upazilla and 16 samples for Bochagonj upazilla under the study showed higher pH values above 7were slightly alkaline in nature and this might be due to the presence of higher amount of Ca, Mg, Na and HCO<sub>3</sub>. Ayers and Westcot (1985) mentioned that normal pH range of irrigation usually varied from 6.0 to 8.5. It indicated that pH of all water samples of both upazilla under test were within the normal range and this water might not be harmful for soils and crops. Similar observations were also reported by Quayum (1995) and Razzaque (1995).

#### 4.1.2 Electrical Conductivity (EC)

The electrical conductivity (EC) of all water samples was within the limit of 200 to 264  $\mu$ S cm<sup>-1</sup> with the mean value of 232.833  $\mu$ S cm<sup>-1</sup> (Appendix IX) and 190 to 248  $\mu$ S cm<sup>-1</sup> with the mean value of 216.833  $\mu$ S cm<sup>-1</sup> (Appendix X) in Birol and Bochagonj upazilla, respectively. The EC value of 17 samples (47.22%) were less than the mean value and rest 19 samples (52.78 %) were higher than the average value for Birol upazilla and EC value of 9 samples (50%) were less than the mean value and rest 9 samples (50%) were less than the mean value and rest 9 samples (50%) were higher than the average value for Bochagonj upazilla. The highest amount (264  $\mu$ S cm<sup>-1</sup>) and the lowest amount (200  $\mu$ S cm<sup>-1</sup>) were obtained from the sample no. 20 and 16 respectively of Birol upazilla and for Bochagonj upazilla, the highest amount (248  $\mu$ S cm<sup>-1</sup>) and the lowest amount (190  $\mu$ S cm<sup>-1</sup>) were obtained from the sample no. 5 and 15 respectively. According to the Richards (1968) as illustrated in Figure 3, all the ground waters under test were rated as 'medium salinity' (C2). Therefore, ground water of such quality can be used for irrigation purpose without harmful effects on soils and crops but moderate leaching will be required.

#### 4.1.3 Total dissolved solids (TDS)

The amount of total dissolved solids (TDS) in ground water samples of the investigated area varied from 101 to 180 mg L<sup>-1</sup> with mean value of 123.25 mg L<sup>-1</sup> (Appendix IX) and varied from 100 to 122 mg L<sup>-1</sup> with mean value of 111.11 mg L<sup>-1</sup> (Appendix X) in Birol and Bochagonj upazilla, respectively. Out of the 36 samples of Birol upazilla, about 69.44 % TDS values (25 samples) were found bellow the mean value and the remaining 30.56% (11 samples) were found above the average value but out of the 18 samples of Bochagonj upazilla, about 55.56 % TDS values (10 samples) were found bellow the mean value and the remaining 44.44% (8 samples) were found above the average value. The highest and the lowest TDS values (101 mg L<sup>-1</sup>) and (180  $\mu$ S cm<sup>-1</sup>)

were obtained from the sample no. 20 and 33, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest TDS values (100 mg L<sup>-1</sup>) and (122 mg L<sup>-1</sup>) were obtained from the sample no. 5 and 9, respectively. Sufficient qualities of bicarbonate, sulphates and chloride are of Ca, Mg and Na caused high TDS values (Karanth, 1994). According to Freeze and Cherry (1979) as reported in Appendix V, all the ground water's under investigation contained less than 1,000 mg L<sup>-1</sup> TDS and were classified 'fresh water' in quality. These waters would not affect the osmotic pressure of soil solution and cell sap of the plants when applied to soil as irrigation water.

| Name of    | Temp. | pН   | EC                      | TDS         |
|------------|-------|------|-------------------------|-------------|
|            | remp. | pm   |                         |             |
| Upazila    |       |      | $\mu S \text{ cm}^{-1}$ | $mg L^{-1}$ |
| Rajarampur | 22.5  | 7.02 | 248                     | 122         |
| Azimpur    | 22.6  | 7.07 | 246                     | 126         |
| Mangalpur  | 22.4  | 7.18 | 243                     | 128         |
| Shahorgram | 22.6  | 7.30 | 244                     | 124         |
| Farakkabad | 22.5  | 7.04 | 226                     | 116         |
| Dharmapur  | 22.6  | 7.10 | 208                     | 109         |
| Bijora     | 22.6  | 7.56 | 249                     | 174         |
| Dhamoir    | 22.5  | 7.58 | 246                     | 127         |
| Bhandara   | 22.4  | 7.20 | 222                     | 114         |
| Ranipukur  | 22.6  | 7.04 | 226                     | 116         |
| Birol      | 22.5  | 7.02 | 214                     | 110         |
| Polashbari | 22.6  | 7.06 | 227                     | 117         |

 Table 1: Temerature, pH, EC and TDS of ground water samples of different unions in Birol

 Table 2: Temerature, pH, EC and TDS of ground water samples of different unions in Bochagonj

| Name of     | Temp. | pН   | EC                      | TDS         |
|-------------|-------|------|-------------------------|-------------|
| Upazila     |       |      | $\mu S \text{ cm}^{-1}$ | $mg L^{-1}$ |
| Nafanagor   | 22.4  | 7.66 | 236                     | 118         |
| Eshania     | 22.5  | 6.99 | 243                     | 120         |
| Murshidahat | 22.4  | 7.21 | 198                     | 102         |
| Atgao       | 22.6  | 7.24 | 218                     | 112         |
| Chatol      | 22.5  | 7.35 | 207                     | 111         |
| Rongao      | 22.6  | 7.41 | 201                     | 106         |

#### **4.1.4 Ionic constituents**

In present study, major ions like Ca, Mg, K, Na,  $CO_3$ , and  $HCO_3$  were dominant quantities but the remaining detected ions were also recorded in minor amounts. The estimated amounts of these ions present in all the samples in relation to irrigation water quality have been described and discussed as follows:

# 4.1.4.1 Calcium (Ca)

The concentration of Ca was found within the range of 10.87 to 19.31 mgL<sup>-1</sup> with the mean value of 16.039 mg L<sup>-1</sup> (Appendix XI) and 15.35 to 18.90 mg L<sup>-1</sup> with the mean value of 17.393 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 18 samples (50%) were found below the mean value and the rest 18 samples (50%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 8 samples (44.44%) were found below the mean value and the rest 10 samples (55.56%) were above the mean value. The highest and the lowest concentration of Ca (19.31 mg L<sup>-1</sup>) and (10.87 mg L<sup>-1</sup>) was observed at sample no.2 and 14, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Ca (18.90 mg L<sup>-1</sup>) and (15.35 mg L<sup>-1</sup>) were obtained from the sample no. 12 and 16, respectively. The concentration of Ca content in ground water was largely dependent on the solubility of CaCO<sub>3</sub>, CaSO<sub>4</sub> and rarely on CaCl<sub>2</sub> (Karanth, 1994). Irrigation water containing less than the 20 meq L<sup>-1</sup> Ca was suitable For Irrigating crops plants (Ayers and Westcot, 1985). On the basis of Ca content, the entire water samples can safely be used for irrigation and would not affect the soils.

#### 4.1.4.2 Magnesium (Mg)

The concentration of Mg was found within the range of 7.98 to 19.44 mg  $L^{-1}$  with the mean value of 12.42 mg  $L^{-1}$  (Appendix XI) and 13.33 to 16.53 mg  $L^{-1}$  with the mean value of 14.613 mg  $L^{-1}$  (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 17 samples (47.22%) were found below the mean value and the rest 19 samples (52.78%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 10 samples (55.56%) were found below the mean value and the rest 8 samples (44.44%) were above the mean value. The highest and the lowest concentration of Mg (19.44 mg  $L^{-1}$ ) and (7.98 mg  $L^{-1}$ ) was observed at sample no.19 and 28 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest

concentration of Mg (16.53 mg  $L^{-1}$ ) and (13.33 mg  $L^{-1}$ ) were obtained from the sample no. 10 and 14, respectively. According to the Ayers and Westcot (1985), all the irrigation water was within the safety limit. The area of this study, all the ground water samples were 'suitable' for irrigation with respect of Mg content.

## 4.1.4.3 Sodium (Na)

The concentration of Na in different water samples were within the range of 2.20 to 4.01 mg L<sup>-1</sup> with the mean value of 2.879 mg L<sup>-1</sup> (Appendix XI) and 2.42 to 3.75 mg L<sup>-1</sup> with the mean value of 2.694 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 24 samples (66.67%) were found below the mean value and the rest 12 samples (33.33%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 15 samples (83.33%) were found below the mean value and the rest 3 samples (16.67%) were above the mean value. The highest and the lowest concentration of Na (4.01 mg L<sup>-1</sup>) and (2.20 mg L<sup>-1</sup>) was observed at sample no.3 and33 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Na (3.75 mg L<sup>-1</sup>) and (2.42 mg L<sup>-1</sup>) were obtained from the sample no. 1 and 14, respectively. The recorded Na content in all the ground water samples under test was far below this specified limit (Ayers and Westcot, 1985). Hence, as per Na content, all the waters of the study area can safely be applied for long-term irrigation without the harmful effects on soils and crops.

## 4.1.4.4 Potassium (K)

The concentration of K in the collected water samples was within the range from of 2.44 to 7.75 mg L<sup>-1</sup> with the mean value of 43.341 mg L<sup>-1</sup> (Appendix XI) and 2.08 to 5.02 mg L<sup>-1</sup> with the mean value of 3.652 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 21 samples (58.33%) were found below the mean value and the rest 15 samples (41.67%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 10 samples (55.56%) were found below the mean value and the rest 8 samples (44.44%) were above the mean value. The highest and the lowest concentration of K (7.75 mg L<sup>-1</sup>) and (2.44 mg L<sup>-1</sup>) was observed at sample no. 2 and 32, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of K (5.02 mg L<sup>-1</sup>) and (3.08 mg L<sup>-1</sup>) were obtained from the sample no. 4 and 1 respectively. The presence of higher quantity of K in some ground water samples might be due to the presence of some potash bearing minerals like sylvite

(KCl) and nitre (KNO<sub>3</sub>) in the aquifers (Karanth, 1994). The detected quantity of K in all the colleted ground water samples had no significant influence on water quality for irrigation. The presence of higher K content in the ground water might have beneficial effect as it acts as an essential nutrient element for plant growth and development.

# 4.1.4.5 Iron (Fe)

The concentration of Fe in the collected water samples was within the range from of 0.22 to 0.46 mg L<sup>-1</sup> with the mean value of 0.282 mg L<sup>-1</sup> (Appendix XI) and 0.26 to 0.62 mg L<sup>-1</sup> with the mean value of 0.391 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 23 samples (63.89%) were found below the mean value and the rest 13 samples (36.11%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 9 samples (50%) were found below the mean value and the rest 9 samples (50%) were above the mean value. The highest and the lowest concentration of Fe (0.46 mg L<sup>-1</sup>) and (0.22 mg L<sup>-1</sup>) was observed at sample no.16 and4 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Fe (0.62 mg L<sup>-1</sup>) and (0.26 mg L<sup>-1</sup>) were obtained from the sample no. 7 and 15, respectively. The recorded iron concentration of all ground water samples was far below the acceptable limit in Appendix III.

#### 4.1.4.6 Zinc (Zn)

The concentration of Zn in the collected water samples was within the range from of 0.032 to 0.068 mg L<sup>-1</sup> with the mean value of 0.0049 mg L<sup>-1</sup> (Appendix XI) and 0.038 to 0.077 mg L<sup>-1</sup> with the mean value of 0.058 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 21 samples (58.33%) were found below the mean value and the rest 15 samples (41.67%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 9 samples (50%) were found below the mean value and the rest 9 samples (50%) were above the mean value and the rest 9 samples (50%) were above the mean value. The highest and the lowest concentration of Zn (0.068 mg L<sup>-1</sup>) and (0.032 mg L<sup>-1</sup>) was observed at sample no. 22 and19 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Zn (0.077 mg L<sup>-1</sup>) and (0.038 mg L<sup>-1</sup>) were obtained from the sample no. 1 and 5, respectively. According to Ayers and Westcot (1985), the acceptable limit of zinc in irrigation water is less than 2.0 mg L<sup>-1</sup>. On the basis of this limit, all the water under investigation was not toxic or problematic for

continuous irrigation. The more Zn concentration in ground water is suitable for crop growth as it helps in many enzymatic reactions.

## 4.1.4.7 Copper (Cu)

The concentration of Cu in the collected water samples was within the range from of 0.065 to 0.089 mg L<sup>-1</sup> with the mean value of 0.072 mg L<sup>-1</sup> (Appendix XI) and 0.047 to 0.088 mg L<sup>-1</sup> with the mean value of 0.067 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 10 samples (27.78%) were found below the mean value and the rest 26 samples (72.22%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 10 samples (55.56%) were found below the mean value and the rest 8 samples (44.44%) were above the mean value. The highest and the lowest concentration of Cu (0.089 mg L<sup>-1</sup>) and (0.065 mg L<sup>-1</sup>) was observed at sample no.16 and5 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Cu (0.088 mg L<sup>-1</sup>) and (0.047 mg L<sup>-1</sup>) were obtained from the sample no. 4 and 18, respectively. According to Ayers and Westcot (1985), the acceptable limit of Cu in irrigation was not problematic for continuous irrigation.

#### 4.1.4.8 Manganese (Mn)

The concentration of Mn in different water samples were within the range of 0.024 to 0.066 mg L<sup>-1</sup> with the mean value of 0.041 mg L<sup>-1</sup> (Appendix XI) and 0.006 to 0.033 mg L<sup>-1</sup> with the mean value of 0.019 mg L<sup>-1</sup> (Appendix XII) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 14 samples (38.89%) were found below the mean value and the rest 22 samples (61.11%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 9 samples (50%) were found below the mean value and the rest 9 samples (50%) were above the mean value. The highest and the lowest concentration of Mn (0.066 mg L<sup>-1</sup>) and (0.024 mg L<sup>-1</sup>) was observed at sample no.1 and 17, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Mn (0.033 mg L<sup>-1</sup>) and (0.006 mg L<sup>-1</sup>) were obtained from the sample no. 7 and 2, respectively. According to Ayers and Westcot (1985), the maximum recommended content of Mn for water used for irrigation is 0.20 mg L<sup>-1</sup>. On the basis of Mn content, all the waters but one under test was not toxic for long-term irrigation.

The cationic concentrations of water samples for both Birol and Bochagonj upazila analyzed were in the descending order of magnitude as:

Ca>Mg>K>Na>Cu>Zn>Mn>Fe

| Name of    | Ca <sup>2+</sup> | $Mg^{2+}$   | Na <sup>+</sup>    | K <sup>+</sup>     | $Zn^{2+}$          | Cu <sup>2+</sup>   | Fe <sup>2+</sup>   | Mn <sup>2+</sup>   |
|------------|------------------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Upazila    | $mg L^{-1}$      | $mg L^{-1}$ | mg L <sup>-1</sup> |
| Rajarampur | 19.16            | 14.34       | 3.86               | 7.59               | 0.037              | 0.075              | 0.24               | 0.065              |
| Azimpur    | 17.51            | 13.55       | 3.61               | 3.59               | 0.044              | 0.065              | 0.23               | 0.044              |
| Mangalpur  | 17.24            | 13.52       | 3.64               | 7.28               | 0.054              | 0.086              | 0.25               | 0.062              |
| Shahorgram | 16.28            | 14.27       | 2.51               | 5.06               | 0.064              | 0.080              | 0.37               | 0.040              |
| Farakkabad | 11.09            | 8.96        | 2.49               | 3.62               | 0.045              | 0.073              | 0.33               | 0.043              |
| Dharmapur  | 11.19            | 8.12        | 2.45               | 2.47               | 0.045              | 0.087              | 0.44               | 0.026              |
| Bijora     | 21.54            | 19.34       | 3.66               | 3.77               | 0.033              | 0.083              | 0.26               | 0.025              |
| Dhamoir    | 22.34            | 17.41       | 2.51               | 3.65               | 0.066              | 0.066              | 0.23               | 0.036              |
| Bhandara   | 14.14            | 11.48       | 2.52               | 5.01               | 0.065              | 0.067              | 0.24               | 0.044              |
| Ranipukur  | 11.81            | 7.82        | 2.51               | 2.96               | 0.056              | 0.075              | 0.28               | 0.043              |
| Birol      | 14.19            | 8.85        | 2.32               | 2.56               | 0.046              | 0.080              | 0.17               | 0.018              |
| Polashbari | 15.92            | 12.44       | 2.44               | 5.01               | 0.038              | 0.082              | 0.38               | 0.047              |

 Table 3: Cationic constituents of the collected ground water samples of different unions in Birol

| Table 4: | Cationic  | constituents | of the | collected | ground | water | samples | of | different |
|----------|-----------|--------------|--------|-----------|--------|-------|---------|----|-----------|
|          | unions in | n Bochagonj  |        |           |        |       |         |    |           |

| Name of     | Ca <sup>2+</sup> | $Mg^{2+}$          | $Na^+$      | $\mathbf{K}^+$ | $Zn^{2+}$          | Cu <sup>2+</sup> | Fe <sup>2+</sup> | Mn <sup>2+</sup>   |
|-------------|------------------|--------------------|-------------|----------------|--------------------|------------------|------------------|--------------------|
| Upazila     | $mg L^{-1}$      | mg L <sup>-1</sup> | $mg L^{-1}$ | $mg L^{-1}$    | mg L <sup>-1</sup> | $mg L^{-1}$      | $mg L^{-1}$      | mg L <sup>-1</sup> |
| Nafanagor   | 18.63            | 15.33              | 3.63        | 1.54           | 0.073              | 0.064            | 0.31             | 0.009              |
| Eshania     | 17.41            | 13.52              | 2.51        | 4.18           | 0.041              | 0.076            | 0.41             | 0.019              |
| Murshidahat | 16.42            | 14.35              | 2.50        | 4.06           | 0.064              | 0.071            | 0.59             | 0.030              |
| Atgao       | 18.57            | 16.44              | 2.52        | 3.65           | 0.056              | 0.073            | 0.38             | 0.016              |
| Chatol      | 17.75            | 13.43              | 2.50        | 3.64           | 0.061              | 0.061            | 0.34             | 0.024              |
| Rongao      | 15.56            | 14.7               | 2.48        | 3.62           | 0.052              | 0.055            | 0.43             | 0.013              |

# 4.1.4.9 Sulphate (SO<sub>4</sub>)

The concentration of  $SO_4$  in different water samples were within the range of 0.359 to 4.220 mg L<sup>-1</sup> with the mean value of 1.570 mg L<sup>-1</sup> (Appendix XIII) and 0.265 to 1.940 mg L<sup>-1</sup> with the mean value of 0.851 mg L<sup>-1</sup> (Appendix XIV) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 19 samples (52.78%) were found below the mean value and the rest 17 samples (47.22%) were above the mean

value but out of the 18 samples of Bochagonj upazilla, 12 samples (66.67%) were found below the mean value and the rest 6 samples (33.33%) were above the mean value. The highest and the lowest concentration of SO<sub>4</sub> (4.220 mg L<sup>-1</sup>) and (0.359 mg L<sup>-1</sup>) was observed at sample no.7 and 5 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of SO<sub>4</sub> (1.940 mg L<sup>-1</sup>) and (0.265 mg L<sup>-1</sup>) were obtained from the sample no. 10 and 17 respectively. According to Ayers and Westcot (1985), the acceptable limit of SO<sub>4</sub> for irrigation water is less than 20 mg L<sup>-1</sup>. On the basis of this limit, all the waters under investigation were not problematic for irrigation without any toxic effect on soils and crops grown in the area of this study.

#### 4.1.4.10 Phosphorus (PO<sub>4</sub>)

The concentration of PO<sub>4</sub> in different water samples were within the range of 0.421 to 1.283 mg L<sup>-1</sup> with the mean value of 0.680 mg L<sup>-1</sup> (Appendix XIII) and0.588 to 1.162 mg L<sup>-1</sup> with the mean value of 0.839 mg L<sup>-1</sup> (Appendix XIV)in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 24 samples (66.67%) were found below the mean value and the rest 12 samples (33.33%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 9 samples (50%) were found below the mean value and the rest 9 samples (50%) were above the mean value. The highest and the lowest concentration of PO<sub>4</sub> (1.283 mg L<sup>-1</sup>) and (0.421 mg L<sup>-1</sup>) was observed at sample no.1 and 30, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of PO<sub>4</sub> (01.162 mg L<sup>-1</sup>) and (0.588 mg L<sup>-1</sup>) were obtained from the sample no. 13 and 6 respectively. Appendix X showed the SO<sub>4</sub><sup>-</sup> content of collected goundwater samples in Birol Upazilla. The status of PO<sub>4</sub> of all tested ground water samples were found within the recommended limit as per Ayers and Westcot (1985).

#### 4.1.4.11 Bicarbonate (HCO<sub>3</sub>)

The concentration of  $HCO_3$  in different water samples were within the range of 0.60 to 43.30 mg L<sup>-1</sup> with the mean value of 1.88 mg L<sup>-1</sup> (Appendix XIII) and 0.90 to 1.80 mg L<sup>-1</sup> with the mean value of 1.41 mg L<sup>-1</sup> (Appendix XIV) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 18 samples (50%) were found below the mean value and the rest 18 samples (50%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 10 samples (55.56%) were found below the mean value and the rest 8 samples (44.44%) were above the mean value. The highest and the

lowest concentration of HCO<sub>3</sub> (3.30 mg L<sup>-1</sup>) and (0.60 mg L<sup>-1</sup>) was observed at sample no. 32 and 28, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of HCO<sub>3</sub> (1.80 mg L<sup>-1</sup>) and (0.90 mg L<sup>-1</sup>) were obtained from the sample no. 1 and 14 respectively.

## 4.1.4.11 Chloride (Cl)

The concentration of Cl in different water samples were within the range of 11.988 to 21.128 mg L<sup>-1</sup> with the mean value of 15.944 mg L<sup>-1</sup> (Appendix XIII) and 13.464 to 23.584 mg L<sup>-1</sup> with the mean value of 19.237 mg L<sup>-1</sup> (Appendix XIV) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 19 samples (52.78%) were found below the mean value and the rest 17 samples (47.22%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 6 samples (33.33%) were found below the mean value and the rest 12 samples (66.67%) were above the mean value. The highest and the lowest concentration of Cl (21.128 mg L<sup>-1</sup>) and (11.988 mg L<sup>-1</sup>) was observed at sample no.10 and 23 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest concentration of Cl (23.584 mg L<sup>-1</sup>) and (13.464 mg L<sup>-1</sup>) were obtained from the sample no. 8 and 6 respectively. Chloride content was recorded comparatively higher among the ionic constituents. According to WHO (1971), the acceptable limit of Cl for irrigation water is less than 200 mg L<sup>-1</sup>. On the basis of this limit, all the waters under investigation were not problematic for irrigation without any toxic effect on soils and crops grown in the area of this study.

| Name of    | SO <sub>4</sub> | PO <sub>4</sub> <sup>-</sup> | HCO <sub>3</sub> - | Cl          |
|------------|-----------------|------------------------------|--------------------|-------------|
| Upazila    | mg $L^{-1}$     | $mg L^{-1}$                  | $mg L^{-1}$        | $mg L^{-1}$ |
| Rajarampur | 0.611           | 1.260                        | 2.0                | 19.482      |
| Azimpur    | 0.369           | 0.911                        | 2.8                | 13.420      |
| Mangalpur  | 4.088           | 0.603                        | 3.1                | 12.597      |
| Shahorgram | 0.780           | 0.646                        | 2.3                | 19.980      |
| Farakkabad | 2.133           | 0.604                        | 1.2                | 12.408      |
| Dharmapur  | 0.677           | 0.794                        | 1.1                | 12.646      |
| Bijora     | 2.524           | 0.682                        | 2.2                | 17.568      |
| Dhamoir    | 2.787           | 0.568                        | 1.4                | 12.030      |
| Bhandara   | 0.831           | 0.663                        | 1.3                | 20.255      |
| Ranipukur  | 1.377           | 0.431                        | 0.7                | 141.129     |
| Birol      | 1.396           | 0.467                        | 3.1                | 12.828      |
| Polashbari | 1.749           | 0.522                        | 1.4                | 15.331      |

 
 Table 5: Anionic constituents of the collected ground water samples of different unions in Birol

| Name of     | $SO_4$      | $PO_4^-$           | HCO <sub>3</sub> <sup>-</sup> | Cl                 |
|-------------|-------------|--------------------|-------------------------------|--------------------|
| Upazila     | mg $L^{-1}$ | mg L <sup>-1</sup> | $mg L^{-1}$                   | mg L <sup>-1</sup> |
| Nafanagor   | 1.517       | 0.902              | 1.6                           | 19.758             |
| Eshania     | 0.588       | 0.608              | 1.3                           | 20.028             |
| Murshidahat | 0.464       | 0.636              | 1.4                           | 22.643             |
| Atgao       | 1.895       | 1.005              | 1.5                           | 18.80              |
| Chatol      | 0.376       | 1.083              | 1.1                           | 13.963             |
| Rongao      | 0.266       | 0.796              | 1.4                           | 20.227             |

 
 Table 6:
 Anionic constituents of the collected ground water samples of different unions in Bochagonj

The anionic concentrations of water samples of or both Birol and Bochagonj upazila analyzed were in the descending order of magnitude as:

 $Cl > SO_4 > HCO_3 > PO_4$ 

# 4.2 Ground water Quality Determining Indices

# 4.2.1 Sodium adsorption ratio (SAR)

Appendix XV and Appendix XVI showed the computed SAR of collected goundwater samples in Birol and Bochagonj Upazilla. The computed sodium adsorption ratio (SAR) of ground water samples was within of 0.552 to 0.984 mg  $L^{-1}$  with the mean value of 0.768 mg  $L^{-1}$  (Appendix XV) and 0.580 to 0.906 mg  $L^{-1}$  with the mean value of 0.673 mg L<sup>-1</sup> (Appendix XVI) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 17 samples (47.22%) were found below the mean value and the rest 19 samples (52.78%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 15 samples (83.33%) were found below the mean value and the rest 3 samples (16.67%) were above the mean value. The highest and the lowest value of SAR (0.984 mg  $L^{-1}$ ) and (0.552 mg  $L^{-1}$ ) was observed at sample no.3 and 24 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of SAR (0.906 mg  $L^{-1}$ ) and (0.580 mg  $L^{-1}$ ) were obtained from the sample no. 1 and 12 respectively. On the basis of SAR, Todd (1980) categorized irrigation waters into 4 groups as shown in Appendix VI. Considering this classification, all the ground waters were 'Excellent' for Birol upazilla (Appendix XVII and Appendix XX) and Bochagonj upazilla (Appendix XIX and Appendix XXI) for both irrigation and drinking purpose. The present investigation expressed that a good proportion of Ca and existed in waters which was

'suitable' for good structure and tilth condition of soil also would improve the soil permeability. The irrigation water with SAR less than 10 might not be harmful for agricultural crops (Todd, 1980). All the ground waters samples used for irrigation were also classified on the basis of alkalinity hazard as diagrammatically in Figure 4 (Richards, 1968). According to this classification, all samples were rated as 'low' alkalinity hazard ( $S_1$ ) class for irrigation as per SAR (Figure 4).

## 4.2.2 Soluble sodium percentage (SSP)

Appendix XV and Appendix XVI showed the computed SSP of collected goundwater samples in Birol and Bochagonj Upazilla. The soluble sodium percentage (SSP) ofground water samples was within of 5.333 to 9.996 mgL<sup>-1</sup> with the mean value of 8.132 mg  $L^{-1}$  (Appendix XV) and 5.816 to 9.236 mg  $L^{-1}$  with the mean value of 6.914 mg  $L^{-1}$  (Appendix XVI) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 16 samples (44.44%) were found below the mean value and the rest 20 samples (55.56%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 15 samples (83.33%) were found below the mean value and the rest 3 samples (16.67%) were above the mean value. The highest and the lowest value of SSP (9.996 mg  $L^{-1}$ ) and (5.333 mg  $L^{-1}$ ) was observed at sample no.16 and 24, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of SSP (9.236 mg  $L^{-1}$ ) and (5.186 mg  $L^{-1}$ ) were obtained from the sample no. 1 and 12 respectively. According to the water classification proposed by Wilcox (1955), all the collected water samples were classified as 'excellent' for Birol upazilla (Appendix XVII) and for Bochagonj upazilla (Appendix XIX) (SSP<20%) as reported in Appendix IV. In the study area, ground waters might safely be applied for irrigating agricultural crops.

# 4.2.3 Totalhardness (H<sub>T</sub>)

Appendix XV and Appendix XVI showed the computed  $H_T$  of collected goundwater samples in Birol and Bochagonj Upazilla. The total hardness ( $H_T$ ) of water samples was within the range of 60.880 to 133.028 mg L<sup>-1</sup> with the mean value of 91.381 mgL<sup>-1</sup> (Appendix XV) and 98.268 to 114.665 mg L<sup>-1</sup> with the mean value of 103.468 mg L<sup>-1</sup> (Appendix XVI) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 17 samples (47.22%) were found below the mean value and the rest 19 samples (52.78%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 12 samples (66.67%) were found below the mean value and the rest 6 samples (33.33%) were above the mean value. The highest and the lowest value of  $H_T$  (133.028 mg L<sup>-1</sup>) and (60.880 mg L<sup>-1</sup>) was observed at sample no.21 and 18, respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of  $H_T$  (114.665 mg L<sup>-1</sup>) and (98.268 mg L<sup>-1</sup>) were obtained from the sample no. 12 and 17 respectively. Sawyer and McCarty (1967) classified irrigation water into 4 classes based on hardness as mentioned in Appendix VII. According to this classification, 24 samples were 'moderately hard', and 12 samples were 'soft'for Birol upazilla (Appendix XVII and Appendix XXI) but for Bochagonj upazilla, all samples are 'moderately hard' (Appendix XXI). Hardness resulted due to presence of appreciable amount of divalent cations like Ca and Mg (Todd, 1980).

## 4.2.4 Permeability Index and

Appendix XV and Appendix XVI showed the computed value of Permeability Index (PI) of collected goundwater samples in Birol and Bochagonj Upazilla. The range of the value of Permeability Index (PI) for all water samples varied from 0.085 to 0.165 mg L<sup>-1</sup> with the mean value of 0.138 mg  $L^{-1}$  (Appendix XV) and 0.095 to 0.134 mg  $L^{-1}$  with the mean value of 0.111 mg L<sup>-1</sup> (Appendix XVI) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 16 samples (44.44%) were found below the mean value and the rest 20 samples (55.56%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 11 samples (61.11%) were found below the mean value and the rest 7 samples (38.89%) were above the mean value. The highest and the lowest value of PI (0.165 mg  $L^{-1}$ ) and (0.085 mg  $L^{-1}$ ) was observed at sample no.31 and 24 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of PI (0.134 mg  $L^{-1}$ ) and (0.095 mg  $L^{-1}$ ) were obtained from the sample no. 7 and 11 respectively. Permeability Problem (PI) occurs when normal infiltration rate of soil is appreciably reduced and hinders moisture supply to crops which is responsible for two most water quality factors as salinity of water and its sodium content relative to calcium and magnesium. Highly saline water increases the infiltration rate. Relative proportions of other different cations or balance of some cations and anions defined by SAR, SSP, PI, H<sub>T</sub> etc. also the indicators of permeability problem.

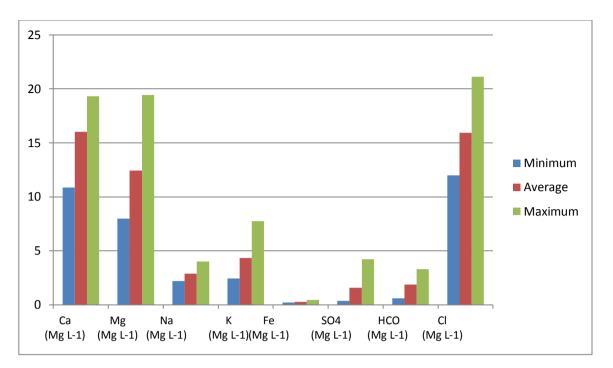



Figure 4: Different ions of water sample for Birol Upazila

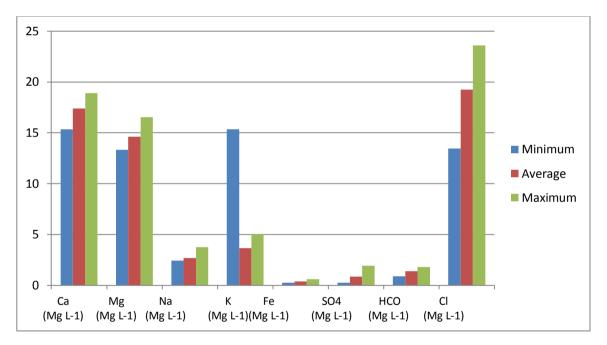



Figure 5: Different ions of water sample for Bochaganj Upazila

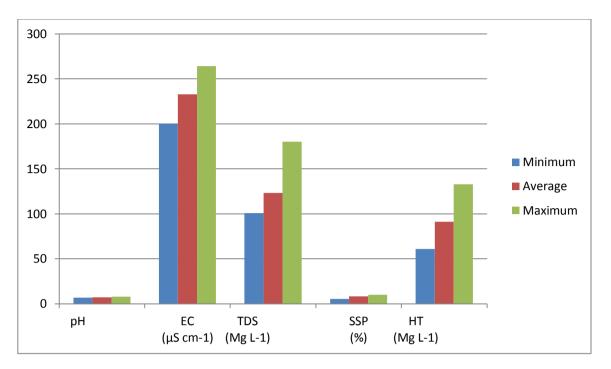



Figure 6: Different perameter of water sample for Birol Upazila



Figure 7: Different perameter of water sample for Bochaganj Upazila

#### **4.2.5 Potential Salinity**

Appendix XV and Appendix XVI showed the computed value of Permeability Salinity (PS) of collected goundwater samples in Birol and Bochagonj Upazilla. The range of the value of Permeability Salinity (PS) for all water samples varied from 5.693 to 83.266 mg L<sup>-1</sup> with the mean value of 29.733 mg L<sup>-1</sup> (Appendix XV) and 13.647 to 23.826 mg L<sup>-1</sup> with the mean value of 19.662 mg L<sup>-1</sup> (Appendix XVI) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 19 samples (52.78%) were found below the mean value and the rest 17 samples (47.22%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 7 samples (38.89%) were found below the mean value and the rest 11 samples (61.11%) were above the mean value. The highest and the lowest value of Permeability Salinity (PS) (83.266 mg L<sup>-1</sup>) and (5.693 mg L<sup>-1</sup>) was observed at sample no. 6 and 7 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of Permeability Salinity (PS) (0.134 mg L<sup>-1</sup>) and (0.095 mg L<sup>-1</sup>) were obtained from the sample no. 1 and 12 respectively. Therefore, according to Permeability Salinity (PS), all of the water samples were suitable for irrigation.

#### 4.2.6 Kelly's Ratio

Kelly's ratio (KR) represents the alkali hazards of water and is calculated by this equation, where all the concentrations were expressed in mg L<sup>-1</sup>. Kelly's ratio is used to find whether ground water is suitable for irrigation or not. Sodium measured against calcium and magnesium was considered by Kelly (1951) for calculating Kelly's ratio. Ground water having Kelly's ratio more than one (1) is generally considered as unfit for irrigation. The range of the value of Kelly's ratio for all water samples varied from 0.062 to 0.129 mg L<sup>-1</sup> with the mean value of 0.104 mg L<sup>-1</sup> (Appendix XV) and 0.069 to 0.109 mg L<sup>-1</sup> with the mean value of 0.084 mg L<sup>-1</sup> (Appendix XVI) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 18 samples (50%) were found below the mean value and the rest 18 samples (50%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 15 samples (83.33%) were found below the mean value of Kelly's ratio (0.129 mg L<sup>-1</sup>) and (0.062 mg L<sup>-1</sup>) was observed at sample no. 16 and 24 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of Kelly's ratio (0.109 mg L<sup>-1</sup>) and (0.069 mg L<sup>-1</sup>) were

obtained from the sample no. 1 and 12 respectively. Therefore, according to Kelly's ratio, all of the water samples were suitable for irrigation.

| Name of    | SAR   | SSP   | H <sub>T</sub> | PI    | PS          | Kelly's |
|------------|-------|-------|----------------|-------|-------------|---------|
| Upazila    |       | %     | $mg L^{-1}$    |       | $mg L^{-1}$ | ratio   |
| Rajarampur | 0.943 | 8.504 | 106.729        | 0.141 | 64.752      | 0.115   |
| Azimpur    | 0.918 | 9.356 | 99.321         | 0.153 | 72.478      | 0.116   |
| Mangalpur  | 0.928 | 8.635 | 98.540         | 0.157 | 6.169       | 0.118   |
| Shahorgram | 0.644 | 6.504 | 99.229         | 0.121 | 51.273      | 0.082   |
| Farakkabad | 0.787 | 9.350 | 64.474         | 0.159 | 11.639      | 0.124   |
| Dharmapur  | 0.788 | 9.864 | 61.280         | 0.160 | 37.357      | 0.126   |
| Bijora     | 0.809 | 7.520 | 133.144        | 0.106 | 16.097      | 0.089   |
| Dhamoir    | 0.564 | 5.433 | 127.217        | 0.087 | 8.646       | 0.063   |
| Bhandara   | 0.705 | 7.526 | 82.431         | 0.130 | 48.805      | 0.098   |
| Ranipukur  | 0.799 | 9.968 | 61.614         | 0.057 | 34.609      | 0.127   |
| Birol      | 0.683 | 8.213 | 71.768         | 0.160 | 18.430      | 0.101   |
| Polashbari | 0.647 | 6.708 | 90.820         | 0.117 | 17.543      | 0.086   |

 Table 7:
 SAR, H<sub>T</sub>, SSP, PI and Kelly's ratio of ground water samples of different unions in Birol

| Table 8: | SAR, H <sub>T</sub> , SSP, PI and Kelly's ratio of ground water samples of different | nt |
|----------|--------------------------------------------------------------------------------------|----|
|          | unions in Bochagonj                                                                  |    |

| Name of     | SAR   | SSP   | H <sub>T</sub> | PI    | PS          | Kelly's |
|-------------|-------|-------|----------------|-------|-------------|---------|
| Upazila     |       | %     | $mg L^{-1}$    |       | $mg L^{-1}$ | ratio   |
| Nafanagor   | 0.880 | 8.960 | 109.447        | 0.131 | 20.517      | 0.106   |
| Eshania     | 0.639 | 6.474 | 98.995         | 0.109 | 20.322      | 0.081   |
| Murshidahat | 0.639 | 6.644 | 99.888         | 0.110 | 22.875      | 0.081   |
| Atgao       | 0.602 | 6.039 | 113.838        | 0.100 | 19.748      | 0.072   |
| Chatol      | 0.634 | 6.632 | 99.466         | 0.106 | 14.151      | 0.080   |
| Rongao      | 0.639 | 6.732 | 99.172         | 0.112 | 20.360      | 0.082   |

# 4.3 Water quality rating and suitability of ground waters for drinking and irrigation usage

The pH values of all samples varied from 6.91 to 7.78 with the mean value of 7.39 (Appendix IX) and 6.96 to 7.72 with the mean value of 7.31 (Appendix X) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 30 samples (83.33%) were found below the mean value and the rest 6 samples (30.56%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 9 samples (50%) were found below the mean value and the rest 9 samples (50%) were above the mean value. The highest and the lowest value of pH (7.78) and (6.91) was observed at sample no. 22

and 5 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of pH (6.96) and (7.72) were obtained from the sample no. 1 and 4, respectively. The pH value of all samples indicated that these samples were slightly acidic to neutral or slightly alkaline in nature. Almost all the water sampleswere 'Highest Desirable' within the recommended value for drinking by WHO as reported in Appendix III. Water quality for irrigation has a great impact on crop production. The important factor that control the pH solution during crop production are: 1) pre-plant substance such as dolomitic limestone put into the substance and substrate component themselves, 2) the alkalinity of irrigation water, 3) the acidity or basicity of the fertilizer used during crop production.

The EC value of all samples varied from 200 to 264  $\mu$ S cm<sup>-1</sup> with mean value of 232.833  $\mu$ S cm<sup>-1</sup> (Appendix IX) and 190 to 248  $\mu$ S cm<sup>-1</sup> with mean value of 216.833  $\mu$ S cm<sup>-1</sup> (Appendix X) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 17 samples (47.22%) were found below the mean value and the rest 19 samples (52.78%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 9 samples (50%) were found below the mean value and the rest 9 samples (50%) were above the mean value. The highest and the lowest value of EC (264  $\mu$ S cm<sup>-1</sup>) and (200  $\mu$ S cm<sup>-1</sup>) was observed at sample no.20 and 16 respectively of Birol upazilla and for Bochagonj upazilla, the highest and the lowest value of EC (248  $\mu$ S cm<sup>-1</sup>) and (190  $\mu$ S cm<sup>-1</sup>) were obtained from the sample no. 5 and 15, respectively. Wilcox (1955) classified water quality into five groups on the basis of EC value (Appendix IV). According to this classification, 33 samples were 'Excellent', and samples were 'Good' for Birol upazilla (Appendix XVII) but for Bochagonj upazilla, all samples are 'Excellent' (Appendix XVII). Higher concentration of EC indicated higher concentration of dissolved constituents that may affect the irrigation water quality.

The values of total dissolved solids (TDS) of collected water samples varied from 101 mg L<sup>-1</sup> to 180 mg L<sup>-1</sup> with mean value of 123.25 mg L<sup>-1</sup> (Appendix IX) and 100 mg L<sup>-1</sup> to 122 mg L<sup>-1</sup> with mean value of 111.11 mg L<sup>-1</sup> (Appendix X) in Birol and Bochagonj upazilla, respectively. Out of 36 samples of Birol upazilla, 25 samples (69.44%) were found below the mean value and the rest 11 samples (30.56%) were above the mean value but out of the 18 samples of Bochagonj upazilla, 10 samples (55.56%) were found below the mean value and the rest 8 samples (44.44%) were above the mean value. The highest and the lowest value of TDS (180 mg L<sup>-1</sup>) and (101 mg L<sup>-1</sup>) was observed at sample no. 20 and 33, respectively of Birol upazilla and for Bochagonj upazilla, the

highest and the lowest value of TDS (122 mg L<sup>-1</sup>) and (100 mg L<sup>-1</sup>) were obtained from the sample no. 5 and 9 respectively. According to Carroll (1962) and Freeze and Cherry (1979), water quality divided into four groups on the basis of TDS (Appendix V). By As per this suitability rating, all the collected ground water samples were considered as 'Fresh Water' for irrigation purpose and 'Highest Desirable' for drinking purpose in both Birol and Bochagonj upazilla. Because TDS values of all water samples were less than 1000 mg L<sup>-1</sup> (Appendix IX) and (Appendix X) for Birol and Bochagonj upazilla, respectively.

| Name of    |           | , I            | Water class ba | ased on   | -                  | Alkinity and       |
|------------|-----------|----------------|----------------|-----------|--------------------|--------------------|
| Upazila    | EC        | TDS            | SAR            | SSP       | HT                 | Salinity<br>Hazard |
| Rajarampur | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Azimpur    | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Mangalpur  | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Shahorgram | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Farakkabad | Excellent | Fresh<br>Water | Excellent      | Excellent | Soft               | $C_1S_1$           |
| Dharmapur  | Excellent | Fresh<br>Water | Excellent      | Excellent | Soft               | $C_1S_1$           |
| Bijora     | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Dhamoir    | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Bhandara   | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |
| Ranipukur  | Excellent | Fresh<br>Water | Excellent      | Excellent | Soft               | $C_1S_1$           |
| Birol      | Excellent | Fresh<br>Water | Excellent      | Excellent | Soft               | $C_1S_1$           |
| Polashbari | Excellent | Fresh<br>Water | Excellent      | Excellent | Moderately<br>Hard | $C_1S_1$           |

 
 Table 9: Quality classification and suitability assessment of water samples for irrigation of different unions in Birol Upazila

Legend:  $C_1$ = Low salinity and  $S_1$ = Low alkalinity

 Table 10:
 Quality classification and suitability assessment of water samples for irrigation of different unions in Bochagonj Upazila

| Name of                     |           | V                                 | Vater class ba | used on   |            | Alkinity and |  |  |  |
|-----------------------------|-----------|-----------------------------------|----------------|-----------|------------|--------------|--|--|--|
| upazila                     | EC        | TDS                               | SAR            | SSP       | HT         | Salinity     |  |  |  |
| apuzitu                     |           | 125                               | STIL           |           |            | Hazard       |  |  |  |
| Nafanagor                   | Excellent | Fresh                             | Excellent      | Excellent | Moderately | $C_1S_1$     |  |  |  |
| Natallagoi                  | Excellent | Water                             | Excellent      | Excellent | Hard       |              |  |  |  |
| Eshania                     | Excellent | Fresh                             | Excellent      | Excellent | Moderately | $C_1S_1$     |  |  |  |
| Estialita                   | Excellent | Water                             | Excellent      | Excellent | Hard       |              |  |  |  |
| Murshidahat                 | Excellent | Fresh                             | Excellent      | Excellent | Moderately | $C_1S_1$     |  |  |  |
| WithSilldallat              | Excellent | Water                             | Excellent      | Excellent | Hard       |              |  |  |  |
| Atgao                       | Excellent | Fresh                             | Excellent      | Excellent | Moderately | $C_1S_1$     |  |  |  |
| Algao                       | Excellent | Water                             | Excellent      | Excellent | Hard       |              |  |  |  |
| Chatol                      | Excellent | Fresh                             | Excellent      | Excellent | Moderately | $C_1S_1$     |  |  |  |
| Water Excellent Excellent E | Excellent | Hard                              |                |           |            |              |  |  |  |
| Pongao                      | Excellent | cellent Fresh Excellent Excellent |                | Excellent | Moderately | $C_1S_1$     |  |  |  |
| Rongao                      | Excellent | Water                             | Excellent      | Excendit  | Hard       |              |  |  |  |

Legend:  $C_1$  = Low salinity and  $S_1$  = Low alkalinity

| Table 11: | Quality classification and suitability assessment of water samples for |
|-----------|------------------------------------------------------------------------|
|           | drinking of different unions in Birol Upazila                          |

| Name of    | Water class based on |    |    |    |    |    |        |    |     |    |
|------------|----------------------|----|----|----|----|----|--------|----|-----|----|
| upazila    | Ca                   | Mg | Zn | Cu | Fe | Mn | $SO_4$ | pН | TDS | HT |
| Rajarampur | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |
| Azimpur    | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |
| Mangalpur  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |
| Shahorgram | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Farakkabad | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Dharmapur  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Bijora     | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Dhamoir    | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Bhandara   | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Ranipukur  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Birol      | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |
| Polashbari | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |

Legend: HD= Highest Desirable and D= Desirable

| Name of     |    | Water class based on |    |    |    |    |                 |    |     |    |
|-------------|----|----------------------|----|----|----|----|-----------------|----|-----|----|
| upazila     | Ca | Mg                   | Zn | Cu | Fe | Mn | SO <sub>4</sub> | pН | TDS | HT |
| Nafanagor   | HD | HD                   | HD | D  | D  | HD | HD              | HD | HD  | D  |
| Eshania     | HD | HD                   | HD | D  | D  | HD | HD              | HD | HD  | D  |
| Murshidahat | HD | HD                   | HD | D  | D  | HD | HD              | HD | HD  | D  |
| Atgao       | HD | HD                   | HD | D  | D  | HD | HD              | HD | HD  | HD |
| Chatol      | HD | HD                   | HD | D  | D  | HD | HD              | HD | HD  | HD |
| Rongao      | HD | HD                   | HD | D  | D  | HD | HD              | HD | HD  | HD |

Table 12: Quality classification and suitability assessment of water samples for<br/>drinking of different unions in Bochagonj Upazila

Legend: HD= Highest Desirable and D= Desirable

#### **CHAPTER V**

## **CONCLUSION AND RECOMMENDATION**

The concentrations of cations and anions under study were within the safe limit for irrigation and drinking usage in Birol and Bochagonj upazila under Dinajpur district. The pH values were within the range of 6.91 to 7.78 and 6.96 to 7.72 in Birol and Bochagonj upazilla, respectively all indicating the slightly acidic to slightly alkaline. The EC value of all samples varied from 200 to 264  $\mu S~cm^{\text{-1}}$  and 190 to 248  $\mu S~cm^{\text{-1}}$  and the SAR values ranged from within of 0.552 to 0.984 mg  $L^{\text{-1}}$  and 0.580 to 0.906 mg  $L^{\text{-1}}$ in Birol and Bochagonj upazilla, respectively. On the combination basis of EC and SAR, all samples were graded as 'low salinity'  $(C_1)$  and 'low alkali'  $(S_1)$  class, combinedly expressed as  $C_1S_1$  for all water samples. All the samples were graded as 'fresh water' collected in both Birol and Bochagonj upazilain respect to TDS because all waters contained TDS less than 1000 mgL<sup>-1</sup>. Water samples were "excellent" based on SSP, in Birol and Bochagonj upazilla. As regards to hardness, 12 samples were 'Soft' and 24 samples were 'Moderately Hard' for irrigation but 27 samples were 'Highest Desirable' and 9 samples were 'Desirable' for drinking in Birol upazilla and for Bochagonj upazilla, all samples were 'moderately hard' for irrigation but 12 samples were 'Highest Desirable' and 6 samples were 'Desirable' for drinking.

# **Recommendations:**

Based on this study, the following recommendations may be made:

- 1. The ground water samples of Birol and Bochagonj upazila under Dinajpur district had no health hazard effect and good for irrigation, drinking and domestic uses.
- In addition to the chemical quality of water, biological and radiological qualities should also be assessed in future for the efficient management of water use for specific purpose.
- The chemical constituents of ground water should be taken into consideration for fertilizer recommendation as it contains reasonable quantity of Ca, Mg, K, Na, Cl, HCO<sub>3</sub>, SO<sub>4</sub>, PO<sub>4</sub> and some micronutricnts.

#### REFERENCES

- Ahmed, M. F. and Rahman, M. M. 2000. Water Supply and Sanitation: Rural and low income urban communities, ITN-Bangladesh. *Center for water supply and waste management, BUET, Dhaka, Bangladesh.*
- Ahmed, M., Talukder, M.S.U. and Majid, M.A. 1993. Quality of groundwater for irrigation in Muktagacha area. Journal of the Institution of Engineers, Bangladesh. 21(3): 91-98.
- Ahsan, M. N. 2004. Assessment of groundwater quality at Eastern Surma Kushiar floodplain and neighboring regions in Sylhet division. M.S. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Alamgir, M., Biswas, S.K., Robbani, G., Chakraborty, K.L., Mannaf, A. and Chowdhury, D.A. 1999. Groundwater quality of the Madhupur Tract. Bangladesh Journal of Science and Technology 1 (1): 47-52.
- Ali, M.K. 1997. Groundwater pollution and its impact on the soil of Nachoul at High Barind Tract. M.S. Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural University, Mymensingh.
- Arefin, M.S. 2002. Water quality assessment for irrigation, livestock, poultry, aquaculture and industrial usage in Pabna. M.S. Thesis, Department of Agriculture Chemistry, Bangladesh Agricultural University, Mymensingh.
- Ayers, R.S. and Westcot, D.W. 1985. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29 (Rcv. 1): 40-96.
- Azad, A. K. 2004. Ionic toxicity assessment of groundwater sources in Kushtia and Chuadanga. M.S. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Chopra, S.L. and Kanwar, J.S. 1980. Analytical Agricultural Chemistry. Kalyani Publishers, Ludhiana, New Delhi. pp. 148-289.

- Ghosh, A.B., Bajaj, J.C., Hasan, R. and Singh, D. 1983. Soil and Water Testing Methods. A Laboratory Manual, Division of Soil Science and Agricultural Chemistry, IARI, New Delhi-1100012. pp. 1-48.
- Golterman, H.L. and Clymo, R.S. 1971. Methods for Chemical Analysis of Fresh Waters. IBP Handbook No. 8. Blackwell Scientific Publications. Oxford and Edenbourgh. pp. 41-46.
- Helaluddin, S.M. 1996. Toxicity assessment of ground and surface waters in different aquifers of Khagrachari. M.S. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Hoque, S.M. 2000. Water toxicity assessment of different sources in Old Brahmaputra Floodplain. M.S. Thesis, Departments of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Hossain, M. and Ahmed, M. 1999. Groundwater quality of Muktagacha aquifer for irrigation. Bangladesh Journal of Agricultural Research. 24(1): 141-152.
- Jesmin, M.S. 2000. Pollution studies on groundwater for irrigation, drinking and industrial usage in Gaibandha aquifers. M.S. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Karanth, K.R. 1994. Ground water Assessment Development and Management. TATA McGraw-Hill Publishing Company Limited. New Delhi, pp. 217-273.
- Latha, M.R., Indirani, R., Sheeba, S. and Francis, H.J. 2002. Groundwater quality of Coimbatore district, Tamil Nadu. Journal of Ecobiology, 14:3, 217-221.
- Luna, M.A.A. 2010. Water quality assessment for irrigated agriculture in Nilphamari District. MS Thesis. Department of Agricultural Chemisty, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
- Michael, A.M. 1978. Irrigation: Theory and Practice. Vikas Pub. House Pvt. Ltd. pp. 448-452.
- Mitra, A. and Gupta S.K. 1999. Effect of sewage water irrigation on essential plant nutrient and pollutant element status in vegetable growing area around Calcutta. Journal of the Indian Society of Soil Science 47(1): 99-105.

- Mohiuddin, A.K. 1995. Change in soil physical-chemical properties under long-term groundwater irrigation at Pangsha thana of Rajbari District. M.S. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Nizam, M.U. 2000. Copper, manganese, iron, zinc and arsenic toxicity detection in water sources of Madhupur Tract. M.S. Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural University, Mymensingh.
- Pucci, A.A.J.; Ehlke, T.A. and Owens, J.P. 1992. Confining unit effects on water quality in the New Jersey Coastal Plan. Groundwater. 30: 415-427.
- Quayum, A. 1995. Impact of groundwatcr on the Grey Terrace soils of Gazipur. M.S. Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural University, Mymensingh.
- Quddus, K.G. and Zaman, M.W. 1996. Irrigation water quality in some selected villages of Meherpur in Bangladesh. Bangladesh Journal of Agricultural Sciences. 23(2): 51-57.
- Raghunath, H.M. 1987. Groundwater. 2nd Edition. Wiley Eastern Ltd. New Delhi. pp. 344-369.
- Rahman, M.M. 1993. Irrigation water quality and its impact on the physio-chemical parameters of Shahzadpur soil. M.Sc. (Ag.) Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural 'University, Mymensingh.
- Rahman, M.M. and Zaman, M.W. 1995. Quality assessment of river and groundwater for irrigation at Shahzadpur in Bangladesh. Progressive Agriculture. 6(2): 98-69.
- Rahman, T.M.A. 2001. Comparative studies of groundwater quality for irrigation and drinking in Bogra Aquifers. M.S. Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural University, Mymensingh.
- Rahnan, M.S. 2000. An appraisal of surface and groundwater pollution in Lower Atrai Basin. M.S. Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural University, Mymensingh.

- Razzaque, M.A. 1995. Assessment of ionic toxicity in water sources and their long-term effect of soil properties. M.S. Thesis, Department of Agricultural Chemistry. Bangladesh Agricultural University, Mymensingh.
- Roy P.K., Roy S.R, Roy B., Sarkar M., and Sarker B.C. 2012. Assessment of arsenic contamination and technique for arsenic free water of arsenic affected area in Bangladesh. Int. J. Sustain. Agril. Tech. 8(8): 30-37.
- Sarker, B.C. 1997. Pollution assessment of surface and groundwater in Narayagonj aquifers. M.S. Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Sarker, B.C. 2001. Water quality assessment for agriculture: sodium and chloride toxicity. Bangladesh J. Agril. Res. 26(1): 15-26.
- Sarker, B.C., Hara, M. and Zaman, M.W. 2000. Suitability assessment of natural water in relation to irrigation and soil properties. Soil Sci. Plant Nutr. 46(4): 773-786.
- Sen, R., Rahman, M.M. and Zaman, M.W. 2000. Groundwater and surface water quality for irrigation in some selected sites of Tongi in Gazipur district. Bangladesh Journal of Agricultural Research. 25(4): 593-601.
- Shahidullah, S.M. 1995. Quality of groundwater and its long-term effect of the properties of Old Brahmaputra Floodplain Soils of Phulphr. M.Sc. (Ag). Thesis, Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh.
- Todd, D.K. 1980. Groundwater Hydrology. 2nd Edition. John-Wiley and Sons. Inc., New York 10016. pp. 267-315.
- Uddin, M. S. 2005. A baseline study on the groundwater quality of lakshmipur and Noakhali districts. M. S. thesis, Department of Agricultural Chemistry, BAU, and Mymensingh.
- UNDP (United Nations Development Program) 1987. The groundwater resources and its availability for development. Master Plan Organization, Ministry of Irrigation, Water Development and Flood Control, Government of the People's Republic of Bangladesh. Technical report No. 5. pp. 4-46.

- USEPA (United States Environmental Protection Agency). 1975. Federal Register. 40 (248): 59566-59588.
- Wilcox, L.V. 1955. Classification and use of irrigation water. United States Department of Agriculture Circular No. 969. Washington D.C. p. 19.
- Zaman, M.W. 2000. Environmental impacts of groundwater abstraction in Barind area. Component-B: Water Quality and Agro-ecology. Paper presented at the Annual workshop of ARMP contract Research project, BARC, Dhaka, 3 April, 2000.
- Zaman, M.W. and Majid, M.A. 1995. Irrigation water quality of Madhupur in Bangladesh. Progressive Agriculture. 6(2): 103-108.
- Zaman, M.W. and Mohiuddin, A.K. 1995. Assessment of groundwater at some parts of Rajbari district in Bangladesh. Bangladesh Journal of Environmental Science. 1: 46-57.
- Zaman, M.W. and Rahman, M.M. 1996. Ionic toxicity of industrial process waters in some selected sites of Sirajgonj in Bangladesh. Bangladesh Journal of Environmental Science 2: 27-34.

# APPENDICES

| S1. | Source        | Location (Birol) |             | Depth  | Date of    |
|-----|---------------|------------------|-------------|--------|------------|
| No. | -             | Union            | Village     |        | collection |
| 1   | Deep Tubewell | Rajarampur       | Hasila      | 200 ft | 13/03/18   |
| 2   | Deep Tubewell | Rajarampur       | Rajarampur  | 200 ft | 13/03/18   |
| 3   | Deep Tubewell | Rajarampur       | Maljhar     | 200 ft | 13/03/18   |
| 4   | Deep Tubewell | Azimpur          | Rajuria     | 205 ft | 13/03/18   |
| 5   | Deep Tubewell | Azimpur          | Ajitpur     | 205 ft | 13/03/18   |
| 6   | Deep Tubewell | Azimpur          | Vabki       | 205 ft | 13/03/18   |
| 7   | Deep Tubewell | Mangalpur        | Gouripur    | 210 ft | 13/03/18   |
| 8   | Deep Tubewell | Mangalpur        | Rudrapur    | 210 ft | 13/03/18   |
| 9   | Deep Tubewell | Mangalpur        | SHikarpur   | 210 ft | 13/03/18   |
| 10  | Deep Tubewell | Shahorgram       | Narapur     | 205 ft | 13/03/18   |
| 11  | Deep Tubewell | Shahorgram       | Fulbari     | 205 ft | 13/03/18   |
| 12  | Deep Tubewell | Shahorgram       | Shibpur     | 205 ft | 13/03/18   |
| 13  | Deep Tubewell | Farakkabad       | Kanchan     | 215 ft | 13/03/18   |
| 14  | Deep Tubewell | Farakkabad       | Tegera      | 215 ft | 13/03/18   |
| 15  | Deep Tubewell | Farakkabad       | Taiyabpur   | 215 ft | 13/03/18   |
| 16  | Deep Tubewell | Dharmapur        | Kaliyagong  | 220 ft | 13/03/18   |
| 17  | Deep Tubewell | Dharmapur        | Dharmapur   | 220 ft | 13/03/18   |
| 18  | Deep Tubewell | Dharmapur        | Enayetpur   | 220 ft | 13/03/18   |
| 19  | Deep Tubewell | Bijora           | Chakerhat   | 210 ft | 14/03/18   |
| 20  | Deep Tubewell | Bijora           | Choumuni    | 210 ft | 14/03/18   |
| 21  | Deep Tubewell | Bijora           | Bijora      | 210 ft | 14/03/18   |
| 22  | Deep Tubewell | Dhamoir          | Kashidanga  | 205 ft | 14/03/18   |
| 23  | Deep Tubewell | Dhamoir          | Dhukurjhari | 205 ft | 14/03/18   |
| 24  | Deep Tubewell | Dhamoir          | Dhamoir     | 205 ft | 14/03/18   |
| 25  | Deep Tubewell | Bhandara         | Rampur      | 215 ft | 14/03/18   |
| 26  | Deep Tubewell | Bhandara         | Boro Tilain | 215 ft | 14/03/18   |
| 27  | Deep Tubewell | Bhandara         | Vandra      | 215 ft | 14/03/18   |
| 28  | Deep Tubewell | Ranipukur        | Ranipukur   | 210 ft | 14/03/18   |
| 29  | Deep Tubewell | Ranipukur        | Puriya      | 210 ft | 14/03/18   |
| 30  | Deep Tubewell | Ranipukur        | Dharmapur   | 210 ft | 14/03/18   |
| 31  | Deep Tubewell | Birol            | Moklespur   | 220 ft | 14/03/18   |
| 32  | Deep Tubewell | Birol            | Madhobpur   | 220 ft | 14/03/18   |
| 33  | Deep Tubewell | Birol            | Shankarpur  | 220 ft | 14/03/18   |
| 34  | Deep Tubewell | Polashbari       | Formanpur   | 205 ft | 14/03/18   |
| 35  | Deep Tubewell | Polashbari       | Polashbari  | 205 ft | 14/03/18   |
| 36  | Deep Tubewell | Polashbari       | Horipur     | 205 ft | 14/03/18   |

# Appendix I: Information regarding water sampling

| Sl.No. | Source           | Location (Bochago | nj)        | Depth  | Date of    |
|--------|------------------|-------------------|------------|--------|------------|
|        |                  | Union             | Village    |        | collection |
| 1      | Deep<br>Tubewell | Nafanagor         | Doulodpur  | 210 ft | 22/02/18   |
| 2      | Deep<br>Tubewell | Nafanagor         | Sultanpur  | 210 ft | 22/02/18   |
| 3      | Deep<br>Tubewell | Nafanagor         | Nafanagor  | 210 ft | 22/02/18   |
| 4      | Deep<br>Tubewell | Eshania           | Vorra      | 205 ft | 22/02/18   |
| 5      | Deep<br>Tubewell | Eshania           | Boiragihat | 205 ft | 22/02/18   |
| 6      | Deep<br>Tubewell | Eshania           | Bokultola  | 205 ft | 22/02/18   |
| 7      | Deep<br>Tubewell | Murshidahat       | Ramdaspara | 220 ft | 22/02/18   |
| 8      | Deep<br>Tubewell | Murshidahat       | Krisnapur  | 220 ft | 22/02/18   |
| 9      | Deep<br>Tubewell | Murshidahat       | Lokkhonia  | 220 ft | 22/02/18   |
| 10     | Deep<br>Tubewell | Atgao             | Madhodpur  | 210 ft | 22/02/18   |
| 11     | Deep<br>Tubewell | Atgao             | Bondhugao  | 210 ft | 22/02/18   |
| 12     | Deep<br>Tubewell | Atgao             | Nehelgao   | 210 ft | 22/02/18   |
| 13     | Deep<br>Tubewell | Chatol            | Rampur     | 220 ft | 22/02/18   |
| 14     | Deep<br>Tubewell | Chatol            | Maherpur   | 220 ft | 22/02/18   |
| 15     | Deep<br>Tubewell | Chatol            | Anora      | 220 ft | 22/02/18   |
| 16     | Deep<br>Tubewell | Rongao            | Mobarakpur | 205 ft | 22/02/18   |
| 17     | Deep<br>Tubewell | Rongao            | Condipur   | 205 ft | 22/02/18   |
| 18     | Deep<br>Tubewell | Rongao            | Basudebpur | 205 ft | 22/02/18   |

# Appendix II: Information regarding water sampling

| Chemical         | Highest Desirerable                                                                                                         | Maximum Permissible |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|
| рН               | 7.0-8.5                                                                                                                     | 6.5-9.2             |
| TDS (mg/L)       | 500                                                                                                                         | 1500                |
| $H_{T}(mg/L)$    | 100                                                                                                                         | 500                 |
| Calcium (mg/L)   | 75                                                                                                                          | 200                 |
| Magnesium (mg/L) | <30 if <b>SO</b> <sub>4</sub> <sup>-</sup> is 250 mg/L upto 150<br>mg/L if <b>SO</b> <sub>4</sub> <sup>-</sup> is <250 mg/L | 150                 |
| Iron (mg/L)      | 0.05                                                                                                                        | 1.5                 |
| Manganese (mg/L) | 0.1                                                                                                                         | 1                   |
| Zinc (mg/L)      | 5                                                                                                                           | 15                  |
| Chloride (mg/L)  | 200                                                                                                                         | 600                 |
| Sulphate (mg/L)  | 200                                                                                                                         | 400                 |
| Nitrate (mg/L)   | -                                                                                                                           | 45*                 |
| Copper (mg/L)    | 0.05                                                                                                                        | 1.5                 |

Appendix III: Standards for chemical quality of drinking water (WHO, 1971)

Appendix IV: Irrigation water classification on the basis of EC and SSP (Wilcox, 1955)

| Water class | Percent sodium | Electrical conductance (EC) |
|-------------|----------------|-----------------------------|
|             |                | μS cm <sup>-1</sup>         |
| Excellent   | <20            | <250                        |
| Good        | 20-40          | 250-750                     |
| Permissible | 40-60          | 750-2000                    |
| Doubtful    | 60-80          | 2000-3000                   |
| Unsuitable  | >80            | >3000                       |

| Water class    | Total dissolved solids (TDS) |
|----------------|------------------------------|
| Water class    | $mgL^{-1}$                   |
| Fresh water    | 0-1,000                      |
| Brackish water | 1,000-10,000                 |
| Saline water   | 10,000-100,000               |
| Brine water    | >100,000                     |

Appendix V: Irrigation water classification based on TDS (Freeze and Cherry, 1979)

Appendix VI: Irrigation water classification based on SAR (Todd, 1980)

| Water class | Sodium adsorption ratio (SAR) |
|-------------|-------------------------------|
| Excellent   | <10                           |
| Good        | 10-18                         |
| Fair        | 18-26                         |
| Poor        | >26                           |

Appendix VII: Classification of irrigation water based on hardness (Sawyer and McCarty, 1967)

| Water class     | Hardness mg $L^{-1}$ , as CaCO <sub>3</sub> |
|-----------------|---------------------------------------------|
| Soft            | 0-75                                        |
| Moderately hard | 75-150                                      |
| Hard            | 150-300                                     |
| Very hard       | >300                                        |

Appendix VIII: Acceptable range In drinking water

| Parameter       | Symbol            | Unit    | Standard | Remarks                     |
|-----------------|-------------------|---------|----------|-----------------------------|
| pН              | pH                | -       | 6.5-8.5  | <6.5and>8.5 not permissible |
| Alkalinity      | -                 | mg/L    | 400      | >400mg/L not permissible    |
| Phosphate       | $PO_4^-$          | mg/L    | 6        | >6mg/L not permissible      |
| Sulphate        | $SO_4^-$          | mg/L    | 400      | >400mg/L not permissible    |
| Ammonium        | $\mathrm{NH_4}^+$ | mg/L    | 1.5      | >1.5mg/L not permissible    |
| Arsenic         | As                | mg/L    | 0.05     | >0.05mg/L not permissible   |
| Conductivity    | -                 | μS/cm   | 500      | >500mg/L not permissible    |
| Faecal Coliform | -                 | n/100ml | 0        | Should be nil               |

| Serial no. | Temp. | pН   | EC              | TDS         |
|------------|-------|------|-----------------|-------------|
|            | 1     |      | $\mu S cm^{-1}$ | $mg L^{-1}$ |
| 1          | 22.5  | 6.98 | 248             | 124         |
| 2          | 22.5  | 7.14 | 250             | 120         |
| 3          | 22.5  | 6.96 | 245             | 122         |
| 4          | 22.6  | 7.17 | 250             | 125         |
| 5          | 22.6  | 6.91 | 243             | 122         |
| 6          | 22.6  | 7.15 | 245             | 130         |
| 7          | 22.4  | 7.08 | 248             | 132         |
| 8          | 22.4  | 7.26 | 241             | 130         |
| 9          | 22.4  | 7.21 | 238             | 121         |
| 10         | 22.6  | 7.25 | 245             | 130         |
| 11         | 22.6  | 7.29 | 242             | 121         |
| 12         | 22.6  | 7.37 | 243             | 120         |
| 13         | 22.5  | 6.92 | 212             | 115         |
| 14         | 22.5  | 7.06 | 234             | 117         |
| 15         | 22.5  | 7.14 | 230             | 116         |
| 16         | 22.4  | 6.99 | 200             | 105         |
| 17         | 22.4  | 7.18 | 214             | 106         |
| 18         | 22.4  | 7.15 | 208             | 114         |
| 19         | 22.6  | 7.49 | 242             | 170         |
| 20         | 22.6  | 7.58 | 264             | 180         |
| 21         | 22.6  | 7.62 | 240             | 170         |
| 22         | 22.5  | 7.78 | 248             | 125         |
| 23         | 22.5  | 7.42 | 245             | 129         |
| 24         | 22.5  | 7.55 | 244             | 126         |
| 25         | 22.4  | 7.18 | 222             | 115         |
| 26         | 22.4  | 7.32 | 226             | 112         |
| 27         | 22.4  | 7.12 | 218             | 113         |
| 28         | 22.6  | 7.15 | 219             | 114         |
| 29         | 22.6  | 6.95 | 230             | 118         |
| 30         | 22.6  | 7.04 | 228             | 115         |
| 31         | 22.5  | 6.98 | 214             | 117         |
| 32         | 22.5  | 6.99 | 212             | 112         |
| 33         | 22.5  | 7.04 | 215             | 101         |
| 34         | 22.6  | 7.04 | 221             | 121         |
| 35         | 22.6  | 7.05 | 223             | 112         |
| 36         | 22.6  | 7.11 | 235             | 117         |
| Mean       | 22.52 | 7.39 | 232.833         | 123.25      |
| Minimum    | 22.4  | 6.91 | 200             | 101         |
| Maximum    | 22.6  | 7.78 | 264             | 180         |

# Appendix IX: Temerature, pH, EC and TDS of ground water samples of Birol

| Serial no. | Temp. | pН    | EC                      | TDS         |
|------------|-------|-------|-------------------------|-------------|
|            |       |       | $\mu S \text{ cm}^{-1}$ | $mg L^{-1}$ |
| 1          | 22.4  | 7.72  | 240                     | 120         |
| 2          | 22.4  | 7.62  | 236                     | 117         |
| 3          | 22.4  | 7.64  | 230                     | 115         |
| 4          | 22.5  | 6.96  | 240                     | 120         |
| 5          | 22.5  | 6.98  | 248                     | 122         |
| 6          | 22.5  | 7.05  | 241                     | 118         |
| 7          | 22.4  | 7.24  | 199                     | 102         |
| 8          | 22.4  | 7.22  | 200                     | 103         |
| 9          | 22.4  | 7.19  | 195                     | 100         |
| 10         | 22.6  | 7.24  | 222                     | 111         |
| 11         | 22.6  | 7.21  | 205                     | 110         |
| 12         | 22.6  | 7.27  | 225                     | 115         |
| 13         | 22.5  | 7.32  | 220                     | 112         |
| 14         | 22.5  | 7.38  | 210                     | 109         |
| 15         | 22.5  | 7.35  | 190                     | 110         |
| 16         | 22.6  | 7.44  | 198                     | 105         |
| 17         | 22.6  | 7.38  | 203                     | 106         |
| 18         | 22.6  | 7.42  | 201                     | 105         |
| Mean       | 22.5  | 7.313 | 216.833                 | 111.111     |
| Minimum    | 22.4  | 6.96  | 190                     | 100         |
| Maximum    | 22.6  | 7.72  | 248                     | 122         |

Appendix X: Temerature, pH, EC and TDS of ground water samples of Bochagonj

| Serial | Ca <sup>2+</sup>   | Mg <sup>2+</sup>   | Na <sup>+</sup>    | K <sup>+</sup>     | Zn <sup>2+</sup>   | Cu <sup>2+</sup>   | Fe <sup>2+</sup>   | Mn <sup>2+</sup>   |
|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| no.    | mg L <sup>-1</sup> |
| 1      | 19.24              | 14.58              | 3.75               | 7.50               | 0.038              | 0.076              | 0.27               | 0.066              |
| 2      | 19.31              | 14.18              | 3.82               | 7.75               | 0.036              | 0.074              | 0.24               | 0.064              |
| 3      | 18.94              | 14.28              | 4.01               | 7.54               | 0.037              | 0.075              | 0.23               | 0.065              |
| 4      | 17.54              | 13.61              | 3.25               | 3.75               | 0.045              | 0.066              | 0.22               | 0.046              |
| 5      | 17.65              | 13.23              | 3.75               | 3.77               | 0.044              | 0.065              | 0.23               | 0.042              |
| 6      | 17.33              | 13.81              | 3.85               | 3.25               | 0.043              | 0.064              | 0.25               | 0.044              |
| 7      | 17.43              | 13.61              | 3.75               | 7.50               | 0.056              | 0.088              | 0.26               | 0.063              |
| 8      | 16.98              | 13.52              | 3.50               | 6.98               | 0.052              | 0.085              | 0.26               | 0.062              |
| 9      | 17.32              | 13.43              | 3.67               | 7.37               | 0.054              | 0.085              | 0.24               | 0.061              |
| 10     | 16.24              | 14.25              | 2.55               | 5.08               | 0.063              | 0.081              | 0.39               | 0.041              |
| 11     | 16.13              | 14.35              | 2.45               | 4.95               | 0.064              | 0.081              | 0.37               | 0.042              |
| 12     | 16.48              | 14.22              | 2.55               | 5.15               | 0.065              | 0.080              | 0.35               | 0.039              |
| 13     | 11.22              | 8.75               | 2.56               | 3.75               | 0.043              | 0.074              | 0.33               | 0.043              |
| 14     | 10.87              | 9.12               | 2.48               | 3.58               | 0.045              | 0.072              | 0.34               | 0.044              |
| 15     | 11.18              | 9.02               | 2.44               | 3.55               | 0.047              | 0.073              | 0.32               | 0.042              |
| 16     | 11.24              | 8.21               | 2.51               | 2.53               | 0.044              | 0.089              | 0.46               | 0.029              |
| 17     | 11.18              | 8.11               | 2.38               | 2.45               | 0.047              | 0.087              | 0.43               | 0.024              |
| 18     | 11.15              | 8.05               | 2.46               | 2.44               | 0.044              | 0.085              | 0.43               | 0.026              |
| 19     | 21.65              | 19.44              | 3.75               | 3.75               | 0.032              | 0.085              | 0.28               | 0.027              |
| 20     | 21.46              | 19.25              | 3.66               | 3.82               | 0.034              | 0.083              | 0.26               | 0.024              |
| 21     | 21.51              | 19.33              | 3.57               | 3.58               | 0.033              | 0.081              | 0.25               | 0.025              |
| 22     | 22.25              | 17.45              | 2.52               | 3.75               | 0.068              | 0.065              | 0.23               | 0.038              |
| 23     | 22.35              | 17.53              | 2.57               | 3.58               | 0.066              | 0.067              | 0.24               | 0.035              |
| 24     | 22.42              | 17.24              | 2.46               | 3.62               | 0.064              | 0.066              | 0.22               | 0.036              |
| 25     | 14.43              | 11.66              | 2.55               | 5.07               | 0.064              | 0.069              | 0.24               | 0.046              |
| 26     | 14.02              | 11.35              | 2.58               | 5.00               | 0.064              | 0.067              | 0.23               | 0.042              |
| 27     | 13.97              | 11.44              | 2.45               | 4.95               | 0.067              | 0.065              | 0.25               | 0.044              |
| 28     | 11.85              | 7.98               | 2.54               | 2.57               | 0.059              | 0.076              | 0.29               | 0.044              |
| 29     | 12.17              | 8.12               | 2.58               | 2.50               | 0.054              | 0.075              | 0.27               | 0.042              |
| 30     | 11.41              | 7.38               | 2.39               | 2.48               | 0.055              | 0.074              | 0.28               | 0.043              |
| 31     | 14.43              | 8.75               | 2.50               | 2.58               | 0.047              | 0.082              | 0.17               | 0.018              |
| 32     | 13.89              | 8.89               | 2.26               | 2.44               | 0.045              | 0.079              | 0.18               | 0.017              |
| 33     | 14.26              | 8.91               | 2.20               | 2.66               | 0.046              | 0.081              | 0.16               | 0.019              |
| 34     | 16.03              | 12.64              | 2.50               | 5.00               | 0.038              | 0.083              | 0.40               | 0.048              |
| 35     | 15.76              | 12.36              | 2.45               | 4.97               | 0.037              | 0.080              | 0.38               | 0.045              |
| 36     | 15.99              | 12.32              | 2.37               | 5.08               | 0.039              | 0.083              | 0.37               | 0.048              |
| Mean   | 16.036             | 12.420             | 2.879              | 4.341              | 0.049              | 0.072              | 0.282              | 0.041              |
| Min.   | 10.87              | 7.98               | 2.20               | 2.44               | 0.032              | 0.065              | 0.22               | 0.024              |
| Max.   | 19.31              | 17.53              | 4.01               | 7.75               | 0.068              | 0.089              | 0.46               | 0.066              |

Appendix XI: Cationic constituents of the collected ground water samples of Birol

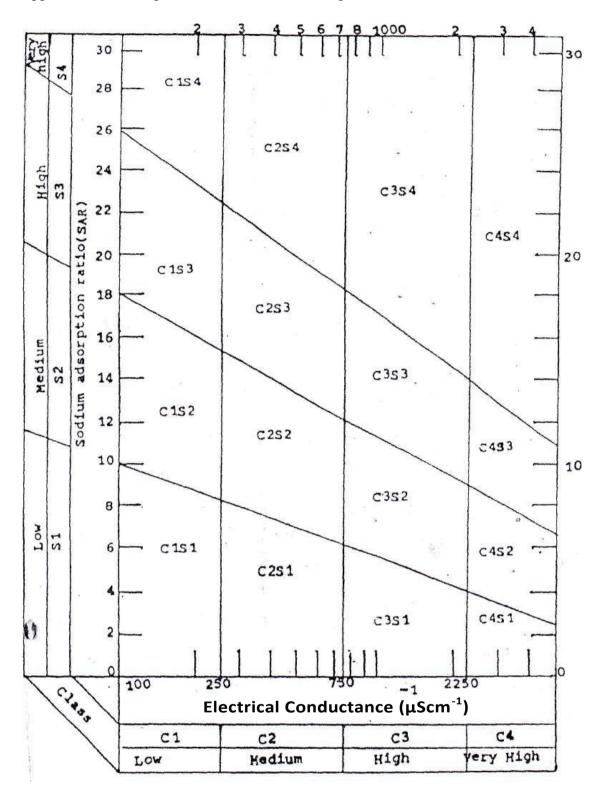
| Serial | Ca <sup>2+</sup>   | $Mg^{2+}$          | Na <sup>+</sup>    | K <sup>+</sup>     | Zn <sup>2+</sup>   | Cu <sup>2+</sup>   | Fe <sup>2+</sup>   | Mn <sup>2+</sup>   |
|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| no.    | mg L <sup>-1</sup> |
| 1      | 18.75              | 15.51              | 3.75               | 2.08               | 0.077              | 0.072              | 0.35               | 0.011              |
| 2      | 18.59              | 15.13              | 3.54               | 2.55               | 0.068              | 0.061              | 0.28               | 0.006              |
| 3      | 18.56              | 15.36              | 3.60               | 2.72               | 0.076              | 0.059              | 0.32               | 0.012              |
| 4      | 17.64              | 13.62              | 2.52               | 5.02               | 0.042              | 0.088              | 0.47               | 0.024              |
| 5      | 17.26              | 13.53              | 2.48               | 4.82               | 0.038              | 0.068              | 0.42               | 0.021              |
| 6      | 17.35              | 13.43              | 2.55               | 4.75               | 0.045              | 0.072              | 0.36               | 0.014              |
| 7      | 16.25              | 14.46              | 2.56               | 3.75               | 0.071              | 0.077              | 0.62               | 0.033              |
| 8      | 16.57              | 14.26              | 2.50               | 3.68               | 0.062              | 0.071              | 0.60               | 0.033              |
| 9      | 16.45              | 14.33              | 2.46               | 3.62               | 0.059              | 0.067              | 0.57               | 0.026              |
| 10     | 18.47              | 16.53              | 2.51               | 3.75               | 0.062              | 0.081              | 0.44               | 0.017              |
| 11     | 18.35              | 16.35              | 2.61               | 3.58               | 0.053              | 0.073              | 0.35               | 0.022              |
| 12     | 18.90              | 16.44              | 2.44               | 3.68               | 0.054              | 0.065              | 0.36               | 0.010              |
| 13     | 17.79              | 13.51              | 2.56               | 3.65               | 0.068              | 0.063              | 0.42               | 0.029              |
| 14     | 17.63              | 13.33              | 2.42               | 3.60               | 0.060              | 0.055              | 0.34               | 0.021              |
| 15     | 17.85              | 13.47              | 2.54               | 3.57               | 0.057              | 0.067              | 0.26               | 0.022              |
| 16     | 15.35              | 14.89              | 2.53               | 3.75               | 0.057              | 0.066              | 0.52               | 0.019              |
| 17     | 15.77              | 14.35              | 2.50               | 3.55               | 0.046              | 0.052              | 0.40               | 0.014              |
| 18     | 15.56              | 14.86              | 2.43               | 3.62               | 0.055              | 0.047              | 0.37               | 0.006              |
| Mean   | 17.393             | 14.631             | 2.694              | 3.652              | 0.058              | 0.067              | 0.391              | 0.019              |
| Min.   | 15.35              | 13.33              | 2.42               | 2.08               | 0.038              | 0.047              | 0.26               | 0.006              |
| Max.   | 18.90              | 16.53              | 3.75               | 5.02               | 0.077              | 0.081              | 0.62               | 0.033              |

Appendix XII: Cationic constituents of the collected ground water samples of Bochagonj

| Serial no. | $SO_4^-$    | $PO_4^{-}$         | HCO <sub>3</sub> | Cl          |
|------------|-------------|--------------------|------------------|-------------|
|            | $mg L^{-1}$ | mg L <sup>-1</sup> | $mg L^{-1}$      | $mg L^{-1}$ |
| 1          | 0.511       | 1.283              | 2.00             | 19.496      |
| 2          | 0.681       | 1.222              | 2.00             | 19.522      |
| 3          | 0.641       | 1.277              | 2.00             | 19.428      |
| 4          | 0.361       | 0.918              | 2.80             | 12.038      |
| 5          | 0.359       | 0.920              | 2.70             | 12.112      |
| 6          | 0.387       | 0.897              | 3.00             | 16.112      |
| 7          | 4.220       | 0.511              | 3.00             | 12.012      |
| 8          | 4.125       | 0.626              | 3.10             | 13.256      |
| 9          | 3.921       | 0.672              | 3.20             | 12.525      |
| 10         | 0.752       | 0.604              | 2.20             | 21.128      |
| 11         | 0.786       | 0.715              | 2.50             | 18.956      |
| 12         | 0.804       | 0.620              | 2.20             | 19.857      |
| 13         | 2.166       | 0.616              | 1.20             | 12.048      |
| 14         | 2.212       | 0.594              | 1.00             | 13.124      |
| 15         | 2.021       | 0.602              | 1.40             | 12.053      |
| 16         | 0.692       | 0.791              | 1.20             | 12.762      |
| 17         | 0.655       | 0.800              | 1.00             | 12.564      |
| 18         | 0.685       | 0.792              | 1.10             | 12.613      |
| 19         | 2.527       | 0.686              | 2.00             | 20.416      |
| 20         | 2.625       | 0.668              | 2.20             | 20.241      |
| 21         | 2.420       | 0.694              | 2.40             | 20.222      |
| 22         | 2.944       | 0.568              | 1.40             | 12.048      |
| 23         | 2.666       | 0.524              | 1.50             | 11.988      |
| 24         | 2.752       | 0.613              | 1.30             | 12.055      |
| 25         | 0.883       | 0.674              | 1.40             | 20.416      |
| 26         | 0.789       | 0.664              | 1.20             | 20.255      |
| 27         | 0.823       | 0.651              | 1.30             | 20.094      |
| 28         | 1.772       | 0.439              | 0.60             | 20.416      |
| 29         | 1.658       | 0.435              | 0.90             | 19.759      |
| 30         | 0.702       | 0.421              | 0.60             | 19.989      |
| 31         | 1.472       | 0.476              | 3.00             | 13.685      |
| 32         | 1.465       | 0.462              | 3.30             | 12.568      |
| 33         | 1.252       | 0.464              | 2.90             | 12.232      |
| 34         | 1.775       | 0.546              | 1.60             | 17.864      |
| 35         | 1.852       | 0.499              | 1.50             | 14.268      |
| 36         | 1.622       | 0.523              | 1.10             | 13.863      |
| Mean       | 1.570       | 0.680              | 1.88             | 15.944      |
| Minimum    | 0.359       | 0.421              | 0.60             | 11.988      |
| Maximum    | 4.220       | 1.283              | 3.30             | 21.128      |

Appendix XIII: Anionic constituents of the collected ground water samples of Birol

| Serial no. | $SO_4$      | $PO_4^-$    | HCO <sub>3</sub> <sup>-</sup> | Cl                 |
|------------|-------------|-------------|-------------------------------|--------------------|
|            | $mg L^{-1}$ | $mg L^{-1}$ | $mg L^{-1}$                   | mg L <sup>-1</sup> |
| 1          | 1.544       | 0.953       | 1.80                          | 20.208             |
| 2          | 1.486       | 0.856       | 1.50                          | 18.854             |
| 3          | 1.522       | 0.899       | 1.70                          | 20.213             |
| 4          | 0.557       | 0.627       | 1.60                          | 20.208             |
| 5          | 0.656       | 0.611       | 1.00                          | 20.115             |
| 6          | 0.552       | 0.588       | 1.30                          | 19.762             |
| 7          | 0.444       | 0.651       | 1.80                          | 22.762             |
| 8          | 0.483       | 0.634       | 1.10                          | 23.584             |
| 9          | 0.465       | 0.624       | 1.30                          | 21.584             |
| 10         | 1.940       | 1.012       | 1.80                          | 20.208             |
| 11         | 1.858       | 1.005       | 1.40                          | 18.595             |
| 12         | 1.887       | 0.998       | 1.30                          | 17.598             |
| 13         | 0.388       | 1.162       | 1.50                          | 14.864             |
| 14         | 0.374       | 1.086       | 0.90                          | 13.561             |
| 15         | 0.366       | 1.001       | 1.10                          | 13.464             |
| 16         | 0.277       | 0.825       | 1.60                          | 21.864             |
| 17         | 0.265       | 0.767       | 1.40                          | 20.563             |
| 18         | 0.256       | 0.796       | 1.20                          | 18.255             |
| Mean       | 0.851       | 0.839       | 1.41                          | 19.237             |
| Minimum    | 0.265       | 0.588       | 0.90                          | 13.464             |
| Maximum    | 1.940       | 1.162       | 1.80                          | 23.584             |


Appendix XIV: Anionic constituents of the collected ground water samples of Bochagonj

| Serial no. | SAR   | SSP   | H <sub>T</sub> | PI    | PS                 | Kelly's |
|------------|-------|-------|----------------|-------|--------------------|---------|
|            |       | %     | $mg L^{-1}$    |       | mg L <sup>-1</sup> | ratio   |
| 1          | 0.912 | 8.238 | 107.878        | 0.137 | 76.305             | 0.111   |
| 2          | 0.934 | 8.400 | 106.413        | 0.140 | 57.333             | 0.114   |
| 3          | 0.984 | 8.876 | 105.898        | 0.146 | 60.618             | 0.121   |
| 4          | 0.824 | 8.436 | 99.651         | 0.143 | 66.693             | 0.104   |
| 5          | 0.954 | 9.670 | 98.368         | 0.156 | 67.476             | 0.121   |
| 6          | 0.976 | 9.964 | 99.946         | 0.160 | 83.266             | 0.124   |
| 7          | 0.952 | 8.770 | 99.376         | 0.158 | 5.693              | 0.121   |
| 8          | 0.896 | 8.446 | 97.882         | 0.155 | 6.427              | 0.115   |
| 9          | 0.936 | 8.691 | 98.363         | 0.159 | 6.389              | 0.119   |
| 10         | 0.653 | 6.590 | 99.025         | 0.122 | 56.191             | 0.084   |
| 11         | 0.628 | 6.374 | 99.160         | 0.122 | 48.234             | 0.080   |
| 12         | 0.651 | 6.550 | 99.502         | 0.121 | 49.396             | 0.083   |
| 13         | 0.810 | 9.563 | 63.925         | 0.162 | 11.125             | 0.128   |
| 14         | 0.784 | 9.341 | 64.567         | 0.155 | 11.866             | 0.124   |
| 15         | 0.768 | 9.148 | 64.932         | 0.160 | 11.928             | 0.121   |
| 16         | 0.805 | 9.995 | 61.761         | 0.164 | 36.884             | 0.129   |
| 17         | 0.766 | 9.633 | 61.201         | 0.156 | 38.363             | 0.123   |
| 18         | 0.794 | 9.966 | 60.880         | 0.162 | 36.826             | 0.128   |
| 19         | 0.827 | 7.651 | 133.829        | 0.115 | 16.158             | 0.091   |
| 20         | 0.811 | 7.532 | 132.575        | 0.116 | 15.422             | 0.090   |
| 21         | 0.790 | 7.379 | 133.028        | 0.115 | 16.712             | 0.087   |
| 22         | 0.566 | 5.434 | 127.170        | 0.088 | 8.185              | 0.063   |
| 23         | 0.576 | 5.534 | 127.748        | 0.089 | 8.993              | 0.064   |
| 24         | 0.552 | 5.333 | 126.734        | 0.085 | 8.761              | 0.062   |
| 25         | 0.706 | 7.472 | 83.881         | 0.130 | 46.242             | 0.098   |
| 26         | 0.724 | 7.735 | 81.585         | 0.132 | 51.343             | 0.102   |
| 27         | 0.687 | 7.372 | 81.829         | 0.129 | 48.831             | 0.096   |
| 28         | 0.807 | 9.996 | 62.343         | 0.148 | 23.043             | 0.128   |
| 29         | 0.810 | 9.996 | 63.717         | 0.154 | 23.835             | 0.127   |
| 30         | 0.780 | 9.912 | 58.783         | 0.149 | 56.949             | 0.127   |
| 31         | 0.734 | 8.748 | 71.950         | 0.165 | 18.594             | 0.108   |
| 32         | 0.670 | 8.129 | 71.174         | 0.163 | 17.158             | 0.099   |
| 33         | 0.646 | 7.764 | 72.181         | 0.154 | 19.540             | 0.095   |
| 34         | 0.660 | 6.805 | 91.899         | 0.121 | 20.128             | 0.087   |
| 35         | 0.653 | 6.790 | 90.076         | 0.120 | 15.408             | 0.087   |
| 36         | 0.630 | 6.529 | 90.487         | 0.111 | 17.094             | 0.084   |
| Mean       | 0.768 | 8.132 | 91.381         | 0.138 | 29.733             | 0.104   |
| Minimum    | 0.552 | 5.333 | 60.880         | 0.085 | 5.693              | 0.062   |
| Maximum    | 0.984 | 9.996 | 133.028        | 0.165 | 83.266             | 0.129   |

Appendix XV: SAR, H<sub>T</sub>, SSP, PI and Kelly's ratio of ground water samples of Birol

| 2001108 | 01-j                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                        |                                                        |                                                        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| SAR     | SSP                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>T</sub>                                        | PI                                                     | PS                                                     | Kelly's                                                |
|         | %                                                                                                                                                                                                                                                                                                                                                                                                                                    | $mg L^{-1}$                                           |                                                        | $mg L^{-1}$                                            | ratio                                                  |
| 0.906   | 9.236                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.466                                               | 0.134                                                  | 20.980                                                 | 0.109                                                  |
| 0.862   | 8.801                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.506                                               | 0.128                                                  | 19.597                                                 | 0.105                                                  |
| 0.874   | 8.844                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.371                                               | 0.131                                                  | 20.974                                                 | 0.106                                                  |
| 0.637   | 6.393                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.921                                                | 0.112                                                  | 20.487                                                 | 0.081                                                  |
| 0.632   | 6.419                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.609                                                | 0.105                                                  | 20.443                                                 | 0.081                                                  |
| 0.650   | 6.610                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.457                                                | 0.111                                                  | 20.038                                                 | 0.083                                                  |
| 0.653   | 6.770                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.885                                                | 0.117                                                  | 22.984                                                 | 0.083                                                  |
| 0.637   | 6.618                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.890                                                | 0.106                                                  | 23.826                                                 | 0.081                                                  |
| 0.627   | 6.545                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.889                                                | 0.108                                                  | 21.817                                                 | 0.080                                                  |
| 0.600   | 5.997                                                                                                                                                                                                                                                                                                                                                                                                                                | 113.931                                               | 0.103                                                  | 21.178                                                 | 0.072                                                  |
| 0.627   | 6.306                                                                                                                                                                                                                                                                                                                                                                                                                                | 112.919                                               | 0.102                                                  | 19.524                                                 | 0.075                                                  |
| 0.580   | 5.816                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.665                                               | 0.095                                                  | 18.542                                                 | 0.069                                                  |
| 0.647   | 6.721                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.877                                                | 0.112                                                  | 15.058                                                 | 0.082                                                  |
| 0.615   | 6.462                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.699                                                | 0.101                                                  | 13.748                                                 | 0.078                                                  |
| 0.642   | 6.715                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.822                                                | 0.106                                                  | 13.647                                                 | 0.081                                                  |
| 0.651   | 6.804                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.435                                                | 0.116                                                  | 22.003                                                 | 0.084                                                  |
| 0.644   | 6.815                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.263                                                | 0.113                                                  | 20.696                                                 | 0.083                                                  |
| 0.623   | 6.577                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.820                                                | 0.107                                                  | 18.383                                                 | 0.080                                                  |
| 0.673   | 6.914                                                                                                                                                                                                                                                                                                                                                                                                                                | 103.468                                               | 0.111                                                  | 19.662                                                 | 0.084                                                  |
| 0.580   | 5.816                                                                                                                                                                                                                                                                                                                                                                                                                                | 98.263                                                | 0.095                                                  | 13.647                                                 | 0.069                                                  |
| 0.906   | 9.236                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.665                                               | 0.134                                                  | 23.826                                                 | 0.109                                                  |
|         | SAR           0.906           0.862           0.874           0.637           0.632           0.650           0.653           0.653           0.653           0.627           0.600           0.627           0.600           0.627           0.600           0.627           0.6015           0.647           0.615           0.642           0.651           0.642           0.651           0.643           0.673           0.580 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Appendix XVI: SAR, H<sub>T</sub>, SSP, PI and Kelly's ratio of ground water samples of Bochagonj



Appendix XVII: Diagram for classification of irrigation waters (Richards, 1968).

|            |     |     |       |       |         |           | V              | Vater class base | ed on     |                    | Alkinity                      |
|------------|-----|-----|-------|-------|---------|-----------|----------------|------------------|-----------|--------------------|-------------------------------|
| Serial no. | EC  | TDS | SAR   | SSP   | HT      | EC        | TDS            | SAR              | SSP       | HT                 | and<br>Salinity<br>Hazard     |
| 1          | 248 | 124 | 0.912 | 8.238 | 107.878 | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | C <sub>1</sub> S <sub>1</sub> |
| 2          | 250 | 120 | 0.934 | 8.4   | 106.413 | Good      | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 3          | 245 | 122 | 0.984 | 8.876 | 105.898 | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 4          | 250 | 125 | 0.824 | 8.436 | 99.651  | Good      | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 5          | 243 | 122 | 0.954 | 9.67  | 98.368  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 6          | 245 | 130 | 0.976 | 9.964 | 99.946  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 7          | 248 | 132 | 0.952 | 8.77  | 99.376  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 8          | 241 | 130 | 0.896 | 8.446 | 97.882  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 9          | 238 | 121 | 0.936 | 8.691 | 98.363  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 10         | 245 | 130 | 0.653 | 6.59  | 99.025  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 11         | 242 | 121 | 0.628 | 6.374 | 99.16   | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | $C_1S_1$                      |
| 12         | 243 | 120 | 0.651 | 6.55  | 99.502  | Excellent | Fresh<br>Water | Excellent        | Excellent | Moderately<br>Hard | C <sub>1</sub> S <sub>1</sub> |
| 13         | 212 | 115 | 0.81  | 9.563 | 63.925  | Excellent | Fresh<br>Water | Excellent        | Excellent | Soft               | $C_1S_1$                      |
| 14         | 234 | 117 | 0.784 | 9.341 | 64.567  | Excellent | Fresh<br>Water | Excellent        | Excellent | Soft               | C <sub>1</sub> S <sub>1</sub> |

Appendix XVIII: Quality classification and suitability assessment of water samples for irrigation in Birol Upazila

| 15 | 230 | 116 | 0.768 | 9.148 | 64.932  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
|----|-----|-----|-------|-------|---------|-----------|----------------|-----------|-----------|--------------------|----------|
| 16 | 200 | 105 | 0.805 | 9.995 | 61.761  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 17 | 214 | 106 | 0.766 | 9.633 | 61.201  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 18 | 208 | 114 | 0.794 | 9.966 | 60.88   | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 19 | 242 | 170 | 0.827 | 7.651 | 133.829 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 20 | 264 | 180 | 0.811 | 7.532 | 132.575 | Good      | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 21 | 240 | 170 | 0.79  | 7.379 | 133.028 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 22 | 248 | 125 | 0.566 | 5.434 | 127.17  | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 23 | 245 | 129 | 0.576 | 5.534 | 127.748 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 24 | 244 | 126 | 0.552 | 5.333 | 126.734 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 25 | 222 | 115 | 0.706 | 7.472 | 83.881  | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 26 | 226 | 112 | 0.724 | 7.735 | 81.585  | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 27 | 218 | 113 | 0.687 | 7.372 | 81.829  | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 28 | 219 | 114 | 0.807 | 9.996 | 62.343  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 29 | 230 | 118 | 0.81  | 9.996 | 63.717  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 30 | 228 | 115 | 0.78  | 9.912 | 58.783  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |

Appendix XVIII: Quality classification and suitability assessment of water samples for irrigation in Birol Upazila (contd.)

| 31 | 214 | 117 | 0.734 | 8.748 | 71.95  | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
|----|-----|-----|-------|-------|--------|-----------|----------------|-----------|-----------|--------------------|----------|
| 32 | 212 | 112 | 0.67  | 8.129 | 71.174 | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 33 | 215 | 101 | 0.646 | 7.764 | 72.181 | Excellent | Fresh<br>Water | Excellent | Excellent | Soft               | $C_1S_1$ |
| 34 | 221 | 121 | 0.66  | 6.805 | 91.899 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 35 | 223 | 112 | 0.653 | 6.79  | 90.076 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |
| 36 | 235 | 117 | 0.63  | 6.529 | 90.487 | Excellent | Fresh<br>Water | Excellent | Excellent | Moderately<br>Hard | $C_1S_1$ |

Appendix XVIII: Quality classification and suitability assessment of water samples for irrigation in Birol Upazila (contd.)

Legend:  $C_1$ = Low salinity and  $S_1$ = Low alkalinity

|            |     |     |       |       |         |           | W              | /ater class base | d on      |                    | Alkinity                      |
|------------|-----|-----|-------|-------|---------|-----------|----------------|------------------|-----------|--------------------|-------------------------------|
| Serial no. | EC  | TDS | SAR   | SSP   | HT      | EC        | TDS            | SAR              | SSP       | HT                 | and<br>Salinity<br>Hazard     |
| 1          | 240 | 120 | 0.906 | 9.24  | 110.412 | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 2          | 236 | 117 | 0.862 | 8.801 | 108.497 | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 3          | 230 | 115 | 0.874 | 8.844 | 109.371 | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 4          | 240 | 120 | 0.637 | 6.393 | 99.921  | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 5          | 248 | 122 | 0.632 | 6.419 | 98.609  | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 6          | 241 | 118 | 0.65  | 6.61  | 98.457  | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 7          | 199 | 102 | 0.653 | 6.77  | 99.885  | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 8          | 200 | 103 | 0.637 | 6.618 | 99.89   | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | $C_1S_1$                      |
| 9          | 195 | 100 | 0.627 | 6.545 | 99.889  | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | $C_1S_1$                      |
| 10         | 222 | 111 | 0.6   | 5.997 | 113.931 | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 11         | 205 | 110 | 0.627 | 6.306 | 112.919 | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |
| 12         | 225 | 115 | 0.58  | 5.816 | 114.665 | Excellent | Fresh<br>Water | Excellent        | Excellent | moderately<br>hard | C <sub>1</sub> S <sub>1</sub> |

Appendix XIX: Quality classification and suitability assessment of water samples for irrigation in Bochagonj Upazila

| 13 | 220 | 112     | 0.647     | 6.721 | 99.877                 | Excellent | Fresh<br>Water | Excellent | Excellent | moderately<br>hard | $C_1S_1$ |
|----|-----|---------|-----------|-------|------------------------|-----------|----------------|-----------|-----------|--------------------|----------|
| 14 | 210 | 100     | 0.615     | C 1/2 | 00,000                 |           | Fresh          |           |           | moderately         | $C_1S_1$ |
| 14 | 210 | 109     | 0.615     | 6.462 | 98.699                 | Excellent | Water          | Excellent | Excellent | hard               |          |
| 15 | 190 | 110     | 0.642     | 6.715 | 99.822                 | Excellent | Fresh          | Excellent | Excellent | moderately         | $C_1S_1$ |
| 15 | 170 | 110     | 0.042     | 0.715 | <i>))</i> .022         | Execution | Water          | Excellent | Execution | hard               |          |
| 16 | 198 | 105     | 0.651     | 6.804 | 99.435                 | Excellent | Fresh          | Excellent | Excellent | moderately         | $C_1S_1$ |
| 10 | 198 | 105     | 0.031     | 0.004 | <i>уу</i> .+ <i>33</i> | Excellent | Water          | Excellent | Excellent | hard               |          |
| 17 | 203 | 106     | 0.644     | 6.815 | 08 262                 | Excellent | Fresh          | Excellent | Excellent | moderately         | $C_1S_1$ |
| 17 | 205 | 100     | 0.044     | 0.815 | 98.263                 | Excellent | Water          | Excellent | Excellent | hard               |          |
| 18 | 201 | 105     | 0.623     | 6.577 | 99.82                  | Excellent | Fresh          | Excellent | Excellent | moderately         | $C_1S_1$ |
| 10 | 201 | 201 105 | 105 0.623 | 0.377 | 99.82                  | Excellent | Water          | Excellent | Excellent | hard               |          |

Appendix XIX: Quality classification and suitability assessment of water samples for irrigation in Bochagonj Upazila (contd.)

Legend:  $C_1$  = Low salinity and  $S_1$  = Low alkalinity

| Serial | _     |       |       | _     |      |       |        |       |     |         |    |    |    | W  | ater c | lass bas | sed on |    |     |    |
|--------|-------|-------|-------|-------|------|-------|--------|-------|-----|---------|----|----|----|----|--------|----------|--------|----|-----|----|
| no.    | Ca    | Mg    | Zn    | Cu    | Fe   | Mn    | $SO_4$ | pН    | TDS | HT      | Са | Mg | Zn | Cu | Fe     | Mn       | $SO_4$ | pН | TDS | HT |
|        | 10.01 | 11.50 | 0.000 |       |      | 0.044 | 0.511  | 1.0.0 | 101 |         |    | Ŭ  |    |    |        |          |        | 1  |     |    |
| 1      | 19.24 | 14.58 | 0.038 | 0.076 | 0.27 | 0.066 | 0.511  | 6.98  | 124 | 107.878 | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | D  |
| 2      | 19.31 | 14.18 | 0.036 | 0.074 | 0.24 | 0.064 | 0.681  | 7.14  | 120 | 106.413 | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | D  |
| 3      | 18.94 | 14.28 | 0.037 | 0.075 | 0.23 | 0.065 | 0.641  | 6.96  | 122 | 105.898 | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | D  |
| 4      | 17.54 | 13.61 | 0.045 | 0.066 | 0.22 | 0.046 | 0.361  | 7.17  | 125 | 99.651  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 5      | 17.65 | 13.23 | 0.044 | 0.065 | 0.23 | 0.042 | 0.359  | 6.91  | 122 | 98.368  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 6      | 17.33 | 13.81 | 0.043 | 0.064 | 0.25 | 0.044 | 0.387  | 7.15  | 130 | 99.946  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 7      | 17.43 | 13.61 | 0.056 | 0.088 | 0.26 | 0.063 | 4.22   | 7.08  | 132 | 99.376  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 8      | 16.98 | 13.52 | 0.052 | 0.085 | 0.26 | 0.062 | 4.125  | 7.26  | 130 | 97.882  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 9      | 17.32 | 13.43 | 0.054 | 0.085 | 0.24 | 0.061 | 3.921  | 7.21  | 121 | 98.363  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 10     | 16.24 | 14.25 | 0.063 | 0.081 | 0.39 | 0.041 | 0.752  | 7.25  | 130 | 99.025  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 11     | 16.13 | 14.35 | 0.064 | 0.081 | 0.37 | 0.042 | 0.786  | 7.29  | 121 | 99.16   | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 12     | 16.48 | 14.22 | 0.065 | 0.08  | 0.35 | 0.039 | 0.804  | 7.37  | 120 | 99.502  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 13     | 11.22 | 8.75  | 0.043 | 0.074 | 0.33 | 0.043 | 2.166  | 6.92  | 115 | 63.925  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 14     | 10.87 | 9.12  | 0.045 | 0.072 | 0.34 | 0.044 | 2.212  | 7.06  | 117 | 64.567  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 15     | 11.18 | 9.02  | 0.047 | 0.073 | 0.32 | 0.042 | 2.021  | 7.14  | 116 | 64.932  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 16     | 11.24 | 8.21  | 0.044 | 0.089 | 0.46 | 0.029 | 0.692  | 6.99  | 105 | 61.761  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 17     | 11.18 | 8.11  | 0.047 | 0.087 | 0.43 | 0.024 | 0.655  | 7.18  | 106 | 61.201  | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 18     | 11.15 | 8.05  | 0.044 | 0.085 | 0.43 | 0.026 | 0.685  | 7.15  | 114 | 60.88   | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | HD |
| 19     | 21.65 | 19.44 | 0.032 | 0.085 | 0.28 | 0.027 | 2.527  | 7.49  | 170 | 133.829 | HD | HD | HD | D  | D      | HD       | HD     | HD | HD  | D  |

Appendix XX: Quality classification and suitability assessment of water samples for drinking in Birol Upazila

| 20 | 21.46 | 19.25 | 0.034 | 0.083 | 0.26 | 0.024 | 2.625 | 7.58 | 180 | 132.575 | HD | HD | HD | D | D | HD | HD | HD | HD | D  |
|----|-------|-------|-------|-------|------|-------|-------|------|-----|---------|----|----|----|---|---|----|----|----|----|----|
| 21 | 21.51 | 19.33 | 0.033 | 0.081 | 0.25 | 0.025 | 2.42  | 7.62 | 170 | 133.028 | HD | HD | HD | D | D | HD | HD | HD | HD | D  |
| 22 | 22.25 | 17.45 | 0.068 | 0.065 | 0.23 | 0.038 | 2.944 | 7.78 | 125 | 127.17  | HD | HD | HD | D | D | HD | HD | HD | HD | D  |
| 23 | 22.35 | 17.53 | 0.066 | 0.067 | 0.24 | 0.035 | 2.666 | 7.42 | 129 | 127.748 | HD | HD | HD | D | D | HD | HD | HD | HD | D  |
| 24 | 22.42 | 17.24 | 0.064 | 0.066 | 0.22 | 0.036 | 2.752 | 7.55 | 126 | 126.734 | HD | HD | HD | D | D | HD | HD | HD | HD | D  |
| 25 | 14.43 | 11.66 | 0.064 | 0.069 | 0.24 | 0.046 | 0.883 | 7.18 | 115 | 83.881  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 26 | 14.02 | 11.35 | 0.064 | 0.067 | 0.23 | 0.042 | 0.789 | 7.32 | 112 | 81.585  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 27 | 13.97 | 11.44 | 0.067 | 0.065 | 0.25 | 0.044 | 0.823 | 7.12 | 113 | 81.829  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 28 | 11.85 | 7.98  | 0.059 | 0.076 | 0.29 | 0.044 | 1.772 | 7.15 | 114 | 62.343  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 29 | 12.17 | 8.12  | 0.054 | 0.075 | 0.27 | 0.042 | 1.658 | 6.95 | 118 | 63.717  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 30 | 11.41 | 7.38  | 0.055 | 0.074 | 0.28 | 0.043 | 0.702 | 7.04 | 115 | 58.783  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 31 | 14.43 | 8.75  | 0.047 | 0.082 | 0.17 | 0.018 | 1.472 | 6.98 | 117 | 71.95   | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 32 | 13.89 | 8.89  | 0.045 | 0.079 | 0.18 | 0.017 | 1.465 | 6.99 | 112 | 71.174  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 33 | 14.26 | 8.91  | 0.046 | 0.081 | 0.16 | 0.019 | 1.252 | 7.04 | 101 | 72.181  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 34 | 16.03 | 12.64 | 0.038 | 0.083 | 0.4  | 0.048 | 1.775 | 7.04 | 121 | 91.899  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 35 | 15.76 | 12.36 | 0.037 | 0.08  | 0.38 | 0.045 | 1.852 | 7.05 | 112 | 90.076  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |
| 36 | 15.99 | 12.32 | 0.039 | 0.083 | 0.37 | 0.048 | 1.622 | 7.11 | 117 | 90.487  | HD | HD | HD | D | D | HD | HD | HD | HD | HD |

Appendix XX: Quality classification and suitability assessment of water samples for drinking in Birol Upazila (contd.)

Legend: HD= Highest Desirable and D= Desirable

|               |       |       |       |       |      |       |        |      |     |         | Water class based on |    |    |    |    |    |        |    |     |    |  |
|---------------|-------|-------|-------|-------|------|-------|--------|------|-----|---------|----------------------|----|----|----|----|----|--------|----|-----|----|--|
| Serial<br>no. | Ca    | Mg    | Zn    | Cu    | Fe   | Mn    | $SO_4$ | pН   | TDS | HT      |                      |    |    |    |    |    |        |    |     |    |  |
| 110.          |       |       |       |       |      |       |        |      |     |         | Ca                   | Mg | Zn | Cu | Fe | Mn | $SO_4$ | pН | TDS | HT |  |
| 1             | 18.75 | 15.51 | 0.077 | 0.072 | 0.35 | 0.011 | 1.544  | 7.72 | 120 | 110.466 | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |  |
| 2             | 18.59 | 15.13 | 0.068 | 0.061 | 0.28 | 0.006 | 1.486  | 7.62 | 117 | 108.506 | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |  |
| 3             | 18.56 | 15.36 | 0.076 | 0.059 | 0.32 | 0.012 | 1.522  | 7.64 | 115 | 109.371 | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |  |
| 4             | 17.64 | 13.62 | 0.042 | 0.088 | 0.47 | 0.024 | 0.557  | 6.96 | 120 | 99.921  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 5             | 17.26 | 13.53 | 0.038 | 0.068 | 0.42 | 0.021 | 0.656  | 6.98 | 122 | 98.609  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 6             | 17.35 | 13.43 | 0.045 | 0.072 | 0.36 | 0.014 | 0.552  | 7.05 | 118 | 98.457  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 7             | 16.25 | 14.46 | 0.071 | 0.077 | 0.62 | 0.033 | 0.444  | 7.24 | 102 | 99.885  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 8             | 16.57 | 14.26 | 0.062 | 0.071 | 0.60 | 0.033 | 0.483  | 7.22 | 103 | 99.890  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 9             | 16.45 | 14.33 | 0.059 | 0.067 | 0.57 | 0.026 | 0.465  | 7.19 | 100 | 99.889  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 10            | 18.47 | 16.53 | 0.062 | 0.081 | 0.44 | 0.017 | 1.940  | 7.24 | 111 | 113.931 | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |  |
| 11            | 18.35 | 16.35 | 0.053 | 0.073 | 0.35 | 0.022 | 1.858  | 7.21 | 110 | 112.919 | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |  |
| 12            | 18.90 | 16.44 | 0.054 | 0.065 | 0.36 | 0.010 | 1.887  | 7.27 | 115 | 114.665 | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | D  |  |
| 13            | 17.79 | 13.51 | 0.068 | 0.063 | 0.42 | 0.029 | 0.388  | 7.32 | 112 | 99.877  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 14            | 17.63 | 13.33 | 0.06  | 0.055 | 0.34 | 0.021 | 0.374  | 7.38 | 109 | 98.699  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 15            | 17.85 | 13.47 | 0.057 | 0.067 | 0.26 | 0.022 | 0.366  | 7.35 | 110 | 99.822  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 16            | 15.35 | 14.89 | 0.057 | 0.066 | 0.52 | 0.019 | 0.277  | 7.44 | 105 | 99.435  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 17            | 15.77 | 14.35 | 0.046 | 0.052 | 0.40 | 0.014 | 0.265  | 7.38 | 106 | 98.263  | HD                   | HD | HD | D  | D  | HD | HD     | HD | HD  | HD |  |
| 18            | 15.56 | 14.86 | 0.055 | 0.047 | 0.37 | 0.006 | 0.256  | 7.42 | 105 | 99.82   | HD                   | HD | HD | HD | D  | HD | HD     | HD | HD  | HD |  |

Appendix XXI: Quality classification and suitability assessment of water samples for drinking in Bochagonj Upazila

Legend: HD= Highest Desirable and D= Desirable